Stochastic optimization
Two-stage stochastic programming with recourse

Fabian Bastin
Uncertainty: representation by means of random elements. The realizations are denoted by ω, and they are drawn from the sample space Ω.

A event A is a subset of Ω; the collection of random events is denoted by \mathcal{A}. The event $A \in \mathcal{A}$ occurs if the output of the experiment is an element from A.
A random linear program

Consider the (toy) problem

\[
\min_x x_1 + x_2 \\
\text{s.t. } \omega_1 x_1 + x_2 \geq 7 \\
\omega_2 x_1 + x_2 \geq 4 \\
x_1, x_2 \geq 0,
\]

where \(\omega_1 \sim U[1, 4], \omega_2 \sim U[1/3, 1] \).
What to do?

• How to solve this problem?
• What is the meaning of solving this problem?
• Is it possible to decide on x after having observed the realization of the random vector ω?

We then talk of a wait-and-see approach. The problem is then easier to solve (we have here a simple linear program).

• But this approach is rarely appropriate!!! We usually have to decide on x before we know the realizations of ω!

• Usually, the “wait-and-see” approach is not appropriate to model the reality behavior: we have to decide on x before we know the realizations from ω.

• Three suggestions:
 1. try to estimate, predict, the uncertainty;
 2. chance-constraints;
 3. penalties on deviations.
A random linear program

Consider the following linear program, parametrized by the random vector ω:

$$\min_x c^T x$$

s.t. $Ax = b$

$$T(\omega)x = h(\omega)$$

$x \in X$,

with $X = \{x \in \mathbb{R}^n | l \leq x \leq u \}$. Example:

$$\min_x x_1 + x_2$$

s.t. $\omega_1 x_1 + x_2 \geq 7$

$\omega_2 x_1 + x_2 \geq 4$

$x_1, x_2 \geq 0$.
Remove the randomness?

A popular approach consists to look for reasonable values for ω_1 and ω_2. How?

Propositions:

• unbiased: choose the mean values for each random variable;
• pessimistic: choose the worst-case values for ω;
• optimistic: choose the best-case values for ω.

Each approach will deliver a different optimal solution!
Penalization of violations

Again, we have to deal with decision problems where the decision x has to be taken before we know the realization of ω

- We nevertheless have to know the distribution of ω over Ω. We assume for now that Ω is finite.
- In models with recourse, the random constraints are “soft”. They can be violated, but the violation cost will influence the choice of x.
- In fact, a second stage linear program is introduced; it describes how the violated random constraints are handled.
The new problem...

In the simplest case, we can simply penalize the constraints deviations by vectors of penalty coefficients q_+ and q_-.

$$\min c^T x + q_+^T s(\omega) + q_-^T t(\omega)$$

s.t. $Ax = b$,

$$T(\omega)x + s(\omega) - t(\omega) = h(\omega),$$

$x \in X$.

But it is still not possible to solve the problem!
The new optimization problem

A reasonable, and solvable, problem is then

\[
\min c^T x + E_\omega [q_+^T s(\omega) + q_-^T t(\omega)]
\]

s.t. \(Ax = b, \)

\[
T(\omega)x + s(\omega) - t(\omega) = h(\omega), \quad \forall \omega \in \Omega
\]

\(x \in X. \)

- In general, we can react in a correct (and maybe optimal) way: we have a recourse to “correct” the first decision once the uncertainty is removed.

- A recourse structure in linear programming is provided by 3 elements:
 - a set \(Y \subset \mathcal{R}^p \) that describes the feasible set of recourse actions, for instance \(Y = \{ y \in \mathcal{R}^p | y \geq 0 \}; \)
 - \(q \): a vector of recourse costs;
 - \(W \): a matrix \(m \times p \), called the recourse matrix.
Recourse formulation

The previous considerations lead us to formulate the following program:

\[
\min c^T x + E_\omega[q^T y]
\]
\[
s.t. \ Ax = b,
\]
\[
T(\omega)x + Wy(\omega) = h(\omega), \ \forall \omega \in \Omega
\]
\[
x \in X,
\]
\[
y \in Y, \ \forall \omega.
\]

We could have \(W \) varying with the realization \(\omega \). If \(W \) is unique, as in the previous formulation, we speak of fixed recourse: the recourse does not change with the scenario. But how to decide on \(y \)?
Some definitions

\[
\min_{x \in X \mid Ax = b} \left\{ c^T x + E_\omega \left[\min_{y \in Y} q^T y \mid Wy = h(\omega) - T(\omega)x \right] \right\}.
\]

- **Second stage function**, or recourse function (penalty) \(v : \mathcal{R}^m \rightarrow \mathcal{R} \):

 \[
v(z) \overset{\text{def}}{=} \min_{y \in Y} \{ q^T y \mid Wy = z \};
 \]

 this function describes the costs related to any vector \(z \) representing the “deviations from the random constraints \(T(\omega)x = f(\omega) \).”

- **Expected value function**, or recourse of minimum expectation \(Q : \mathcal{R}^n \rightarrow \mathcal{R} \):

 \[
 Q(x) = E_\omega [v(h(\omega) - T(\omega)x)].
 \]

 It describes the expected recourse cost, for any policy \(x \in \mathcal{R}^n \).
The two-stage linear stochastic problem (SP)

Using the previous definitions, we can rewrite the stochastic programming problem with recourse in terms of x only:

$$\min_{x \in X} \{ c^T x + Q(x) \mid Ax = b \}.$$

It is a (nonlinear) mathematical programming problem in \mathbb{R}^n. The properties of $Q(x)$ influence the solution techniques.

Is $Q(x)$

- linear?
- convex?
- continuous?
- differentiable?
Expression in terms of \(y \)'s

\[
\min_{x, y(\omega)} E_\omega [c^T x + q^T y(\omega)]
\]

s.t. \(Ax = b \) \hspace{1cm} \text{first-stage constraints}

\[
T(\omega)x + Wy(\omega) = h(\omega), \quad \forall \omega \in \Omega \quad \text{second-stage constraints}
\]

\(x \in X, \ y(\omega) \in Y \).

Consider the (discrete) case where \(\Omega = \{\omega_1, \omega_2, \ldots, \omega_S\} \subset \mathcal{R}^r \).

\[
P(\omega = \omega_s) = p_s, \ s = 1, 2, \ldots, S
\]

\[
T_s = T(\omega), \ h_s = h(\omega)
\]
Deterministic equivalent

Develop along the S scenarios.

$$\min_{x, y_1, \ldots, y_S} \quad c^T x + p_1 q^T y_1 + p_2 q^T y_2 + \ldots + p_S q^T y_S$$

s.t.

$$Ax = b$$
$$T_1 x + W y_1 = h_1$$
$$T_2 x + W y_2 = h_2$$
$$\vdots$$
$$T_S x + W y_S = h_s$$

$$x \in X, \ y_1 \in Y, \ y_2 \in Y, \ldots, \ y_S \in Y.$$
Deterministic equivalent (cont’d)

• $y_s = y(\omega_s)$ is the recourse action to take if the scenario ω_s occurs.

• Advantage: it is a linear program.

• Drawback: it is a linear program of (very) large dimension:
 • $n + pS$ variables;
 • $m_1 + mS$ constraints.

• Advantage: the linear program matrix has a special structure (stairway shape). Can we exploit it?
Large scale, . . . and?

Assume that we have \(r \) random variables (\(\Omega \subset \mathbb{R}^r \)).

- Consider the following problem (source: Linderoth). A Telecom company want to expand its network in order to meet an unknown (random) demand.
- There are 86 unknown demands. Each demand is independant and take a value in a set of 7 values. Consequently

\[
S = |\Omega| = 7^{86} \approx 4.77 \times 10^{72}.
\]

. . . number of subatomic particles in the universe!

- It can be even worse . . .
 If \(\Omega \) is not finite, but holds an infinite number of elements? It is especially true with continuous random variables. Our “deterministic equivalent” would have an infinite number of variables and constraints!

- We can solve an approximate problem, obtained by sampling over the random vector.
Consider again our toy problem

$$\begin{align*}
\min_{x} & \quad x_1 + x_2 \\
\text{s.t.} & \quad \omega_1 x_1 + x_2 \geq 7 \\
& \quad \omega_2 x_1 + x_2 \geq 4 \\
& \quad x_1, x_2 \geq 0,
\end{align*}$$

where $\omega_1 \sim U[1, 4], \omega_2[1/3, 1]$.

How to build the deterministic equivalent?
Example: recourse formulation

Assume for now that Ω is finite, with S scenarios.

$$\min_x x_1 + x_2 + \sum_{s \in S} p_s \lambda (y_{1s} + y_{2s})$$

s.t. $\omega_{1s} x_1 + x_2 + y_{1s} \geq 7$

$\omega_{2s} x_1 + x_2 + y_{1s} \geq 4$

$x_1, x_2 \geq 0,$

$y_{1s}, y_{2s} \geq 0.$

A difficulty is therefore to decide how to construct the deterministic equivalent. How to choose λ?

How to construct the scenarios? We can proceed with Monte Carlo sampling, with $p_s = 1/N$, $\forall s$. We will explore this approach in more details later.
Example: recourse formulation (cont’d)

More generally, we can build the program

$$\min_x x_1 + x_2 + E_\omega [Q(x)]$$

s.t. $x_1, x_2 \geq 0$,

and

$$Q(x) = \min_y q_1 y_1 + q_2 y_2$$

s.t. $\omega_1 x_1 + x_2 + y_1 \geq 7,$

$$\omega_2 x_1 + x_2 + y_2 \geq 4.$$
Two-stage linear programming problem, fixed recourse

More generally, consider the problem

$$\min c^T x + E_\xi[q(\xi)^T y(\xi)]$$

subject to the constraints

$$Ax = b,$$
$$T(\xi)x + Wy(\xi) = h(\xi) \quad \forall \xi \in \Xi,$$
$$x \in X,$$
$$y(\xi) \in Y,$$

where ξ is a random vector defined on the random space (Ω, \mathcal{F}, P), and Ξ is the support of ξ.

Let

$$Q(x, \xi(\omega)) = \min_{y \in Y} \left\{ q(\xi)^T y : Wy = h(\xi) - T(\xi)x \right\}.$$
\[
\min_{x \in X \mid Ax = b} \left\{ c^T x + E\xi \left[\min_{y \in Y} \{ q(\xi)^T y \mid Wy = h(\xi) - T(\xi)x \} \right] \right\}
\]

Second-stage function, or recourse function, \(v : \Xi \times \mathbb{R}^m \rightarrow \mathbb{R} \):

\[
v(\xi, z) \overset{\text{def}}{=} \{ q(\xi)^T y \mid Wy = z \}.
\]

Given a “policy” \(x \) and a realization of the random vector \(\xi \), \(z \) measures the deviation of the first stage, i.e. \(z = h(\xi) - T(\xi)x \), \(v(\xi, z) \) is the minimum cost to “correct” the decision in order to satisfy the constraints again.
Recourse function

The expected recourse function, or the function of minimum expected recourse, \(Q : \mathcal{R}^n \rightarrow \mathcal{R} \), for any policy \(x \in \mathcal{R}^n \):

\[
Q \overset{\text{def}}{=} E_\xi [Q(x, \xi)],
\]

describes the recourse cost expectation, with

\[
Q(x, \xi) = v(\xi, h(\xi) - T(\xi)x).
\]

With these definitions, the problem can be rewritten as:

\[
\min_{x \in X} c^T x + Q(x) \text{ such that } Ax = b.
\]

It is a nonlinear program over \(\mathcal{R}^n \). Properties?
Summarize our formulations.

\[
\begin{align*}
\min_{x \in \mathbb{R}^n_+ \mid Ax = b} & \left\{ c^T x + E_\xi \left[\min_{y \in \mathbb{R}^p_+} \{ q(\xi)^T y \mid Wy = h(\xi) - T(\xi)x \} \right] \right\} \\
\min_{x \in \mathbb{R}^n_+ \mid Ax = b} & \left\{ c^T x + E_\xi [v(\xi, h(\xi) - T(\xi)x)] \right\} \\
\min_{x \in \mathbb{R}^n_+ \mid Ax = b} & \left\{ c^T x + E_\xi [Q(x, \xi)] \right\} \\
\min_{x \in \mathbb{R}^n_+} & \left\{ c^T x + Q(x) \mid Ax = b \right\}
\end{align*}
\]
Notations

- First-stage feasible set:
 \[K_1 = \{ x \in \mathbb{R}^n_+ \mid Ax = b \} \].

- Second-stage feasible set:
 \[K_2 = \{ x \mid Q(x) < \infty \} \].

Therefore we can rewrite the problem as

\[\min_x \{ c^T x + Q(x) \mid x \in K_1 \cap K_2 \} \].
Relatively complete recourse

A problem is said to have a relatively complete recourse if $K_1 \subseteq K_2$. Advantage: $\forall x$ feasible in the first stage, we have $Q(x) < \infty$, so we do not have to consider the case $Q(x, \xi) = \infty$.

We can also define the set of second-stage feasible points, given a realization ξ:

$$K_2(\xi) = \{x \mid Q(x, \xi) < \infty\}.$$

Define

$$K_2^P = \bigcap_{\xi \in \Xi} K_2(\xi).$$

Clearly $K_2 = K_2^P$ if ξ has a finite support. Is it still the case when ξ follows a continuous distribution?
We have the following results.

Theorem

*If ξ has finite second order moments, $P[\xi \mid Q(x, \xi) < \infty] = 1$ implies $Q(x) < \infty$.***

In other words, we must have that $Q(x, \xi)$ is upper bounded almost surely. Proof: technical!

Reminder: almost surely, or with probability one. An event A is said to occur almost surely if $P[A] = 1$.

More interestingly, we have

Theorem

For a stochastic program with fixed recourse, where ξ has finite second order moments, the sets K_2 and K_2^p are the same.
Complete recourse

The relatively complete recourse is very useful in practice and on a theoretical point of view, but it can be difficult to identify. A particular case of relatively complete recourse can however often be identified from the structure of W.

We say that a problem has a **complete recourse** if $\forall z \in \mathcal{R}^m, \forall \xi, v(\xi, z) < +\infty$. In other terms, $\forall z \in \mathcal{R}^m, \exists y \in \mathcal{R}^m_+ \text{ such that } Wy = z$, i.e. if the matrix W satisfies

$$\{ z \mid z = Wy, y \geq 0 \} = \mathcal{R}^m.$$

This also implies that $\forall x, T(\xi), h(\xi), Q(x, \xi) < \infty$, as $z = h - Tx$.
Simple recourse

A particular case of complete recourse is the simple recourse, for which we have

\[W = (I \ - I), \]

with \(I \) the identity matrix, of order \(m \).

In this case, the second stage program can be read as

\[
Q(x, \xi) = \min_y q^+(\xi)^Ty^+ + q^-(\xi)^Ty^-
\]

s.t. \(y^+ - y^- = h(\xi) - T(\xi)x, \)

\[
y^+, \ y^- \geq 0.
\]

That is, for \(q^+(\xi) + q^-(\xi) \geq 0 \), the recourse variables \(y^+ \) and \(y^- \) can be chosen to measure the absolute violations in the stochastic constraints.
Simple recourse (cont’d)

Theorem
Assume that the two-stage (linear) stochastic program is feasible and has a simple recourse, and that ξ has finite second-order moments. Then $Q(x)$ is finite if and only if $q_i^+ + q_i^- \geq 0$ with probability one.
Simple recourse (cont’d)

Proof.

(⇒) Assume by contradiction that \(Q \) is finite, but for some component \(i \), \(q_i^+(\xi(\omega)) + q_i^- (\xi(\omega)) < 0 \) for \(\omega \in \Omega_1 \) with \(P[\Omega_1] > 0 \). Then, for any feasible \(x \), for all \(\omega \in \Omega_1 \) with \(h_i(\xi(\omega)) - T_i(\xi(\omega))x > 0 \), define

\[
y_i^+(\xi(\omega)) = h_i(\xi(\omega)) - T_i(\xi(\omega))x + u, \quad y_i^- (\xi(\omega)) = u.
\]

Therefore,

\[
y_i^+ - y_i^- (\xi(\omega)) = h_i(\xi(\omega)) - T_i(\xi(\omega))x, \quad y_i^+ \geq 0, \quad y_i^- \geq 0.
\]

Moreover, since \(Q \) is finite, \(Q(x, \xi(\omega)) \) is feasible almost surely, so, almost surely, we can choose \(y_j^+ \) and \(y_j^- \) feasible, \(j \neq i \).
Proof.

(\Rightarrow)
When $u \to \infty$, $Q(x, \xi(\omega)) \to -\infty$ since
$q_i^+ (\xi(\omega))y_i^+ + q_i^- (\xi(\omega))y_i^- \to -\infty$.

A similar argument can be applied if $h_i (\xi(\omega)) - T_i (\xi(\omega))x \leq 0$,
by taking

$$y_i^+ (\xi(\omega)) = u, \quad y_i^- (\xi(\omega)) = -h_i (\xi(\omega)) + T_i (\xi(\omega))x + u.$$

By componing these two cases, we conclude that Q is not finite. \square
Proof.
(⇐) Assume $q_i^+ + q_i^- \geq 0$ with probability one, $\forall i$. Any feasible solution satisfies

$$y^+(\omega) - y^-(\omega) = h(\xi(\omega)) - T(\xi(\omega))x, \quad y^+(\omega) \geq 0, \quad y^-(\omega) \geq 0.$$

Therefore for almost every ω, $Q(x, \xi(\omega))$ is bounded below by 0, and from the fundamental theorem of linear programming, we can choose as optimal solution

$$y^+(\omega) = (h(\xi(\omega)) - T(\xi(\omega))x)^+, \quad y^-(\omega) = (-h(\xi(\omega)) + T(\xi(\omega))x)^+,$$

where $a^+ = \max\{0, a\}$. \qed
Simple recourse (cont’d)

Proof.

(⇐) Thus,

\[Q(x, \xi(\omega)) = \sum_{i=1}^{m} (q_i^+(\xi(\omega))(h_i(\xi(\omega)) - T_i(\xi(\omega))x)^+ + q_i^-(\xi(\omega))(-h_i(\xi(\omega)) + T_i(\xi(\omega))x)^+) \]

Consequently \(Q(x, \xi(\omega)) \) is finite for almost every \(\omega \) and bounded below by 0.

Therefore, \(Q(x) \) is bounded below by 0, and according to the previous results, \(Q(x) < \infty \). This implies that \(Q(x) \) is finite. \(\square \)
Exercise

Consider the second stage program

\[Q(x, \xi) = \min_y \{ y \mid \xi y = 1 - x, y \geq 0 \}. \]

We assume that \(\xi \) follows a triangular distribution on \([0, 1]\), with \(P[\xi \leq u] = u^2 \).

(a) Is the recourse fixed? Why?

The recourse is not fixed, as \(W \equiv \xi \), and therefore, \(W \) is random. Moreover, as \(\xi \) can take the value 0, the transformation

\[y = 1/\xi - x/\xi, \]

is not properly defined on \(\Xi = [0, 1] \); this also means that

\[W = \begin{cases} 0 & \text{si } \xi = 0; \\ 1 & \text{si } \xi \neq 0. \end{cases} \]
Exercise (cont’d)

(b) Express $K_2(\xi)$ for all ξ in $[0, 1]$.

We have to consider two cases: $\xi = 0$ or $\xi \in (0, 1]$.

1. $\xi \in (0, 1]$ In this case, as $y, \xi \geq 0$, $1 - x$ has to be non-negative in order to have a well-defined problem:

 $$K_2(\xi) = \{ x \mid x \leq 1 \}.$$

 The value and optimal solutions are

 $$Q^*(x, \xi) = (1 - x)/\xi, \quad y^* = (1 - x)/\xi.$$

2. $\xi = 0$ There exists no y such that $0.y = 1 - x$, except if $x = 1$, so

 $$K_2(0) = \{ 1 \}.$$
Exercise (cont’d)

(c) Express K_2, K_2^P and Q.

From the previous point, we have

$$K_2^P = \{ x \mid x \leq 1 \} \cap \{ 1 \} = \{ 1 \}.$$

We also have, as $P[\xi = 0] = 0$,

$$Q(x) = \int_0^1 \frac{1 - x}{\xi} 2\xi d\xi = 2(1 - x), \forall x \leq 1.$$

Consequently $K_2^P \subset K_2 = \{ x \leq 1 \}$.

The difference comes from the fact that a point is not in K_2^P as soon as it is not feasible for a given value of ξ, but K_2 does not consider unfeasible situations that occur with a null probability.
Recourse function

Let \(y_1^* \) and \(y_2^* \) be two optimal solutions of \(v(\xi, z) \), associated to \(z = z_1 \) and \(z = z_2 \), respectively. Then, the convex combination
\[
y_\alpha = \alpha y_1^* + (1 - \alpha) y_2^*, \quad \alpha \in [0, 1],
\]
is feasible with respect to \(z_\alpha = \alpha z_1 + (1 - \alpha) z_2 \), as
\[
\alpha y_1^* + (1 - \alpha) y_2^* \geq 0,
\]
and
\[
W(\alpha y_1^* + (1 - \alpha) y_2^*) = \alpha Wy_1^* + (1 - \alpha) Wy_2^* = \alpha z_1 + (1 - \alpha) z_2 = z_\alpha.
\]

Moreover,
\[
v(\xi, z_\alpha) = q(\xi)^T y_\alpha^* \leq q(\xi)^T (\alpha y_1^* + (1 - \alpha) y_2^*)
\]
\[
= \alpha q(\xi)^T y_1^* + (1 - \alpha) q(\xi)^T y_2^*
\]
\[
= \alpha v(\xi, z_1) + (1 - \alpha) v(\xi, z_2).
\]

In other words, \(v \) is a convex function w.r.t. \(z \in \mathcal{R}^m \).
Convexity of $Q(x, \xi)$?

$$Q(x, \xi) = v(\xi, h(\xi) - T(\xi)x).$$

$$\lambda Q(x_1, \xi) + (1 - \lambda) Q(x_2, \xi)$$

$$= \lambda v(\xi, h(\xi) - T(\xi)x_1) + (1 - \lambda) v(\xi, h(\xi) - T(\xi)x_2)$$

$$\geq v(\xi, \lambda(h(\xi) - T(\xi)x_1) + (1 - \lambda)(h(\xi) - T(\xi)x_2))$$

$$= v(\xi, h(\xi) - T(\xi)(\lambda x_1 + (1 - \lambda)x_2))$$

$$= Q(\lambda x_1 + (1 - \lambda)x_2, \xi).$$

Therefore $Q(x, \xi)$ if convex w.r.t. x, given ξ. More generally

Theorem

*If A is a linear transformation from \mathbb{R}^n to \mathbb{R}^n, and $f(x)$ is a convex function on \mathbb{R}^m, the composite function $(fA)(x) \overset{\text{def}}{=} f(Ax)$ is a convex function on \mathbb{R}^n.***
Convexity of second-stage function

We have the following result (Birge and Louveaux, Chapter 3, Theorem 5).

Theorem

For a stochastic program with fixed recourse, $Q(x, \xi)$ is

(a) a piecewise convex linear function in (h, T),
(b) a piecewise concave linear function in q,
(c) a piecewise convex linear function in x, for all x in $K = K_1 \cap K_2$.

Proof.
In order to show convexity in (a) and (c), it is sufficient to prove that \(v(\xi, z) = \min \{q(\xi)^T y \mid Wy = z\} \) is convex, which has already been done. We can proceed similarly to show concavity w.r.t. \(q \).
The piecewise linearity follows from the fact that the number of different optimal bases for a linear program is finite.

Convexity of the recourse?

\[
Q(x) = E_{\xi}[Q(x, \xi)].
\]

Suppose for now that \(\xi \) has a finite support, i.e. \(\Xi = \{\xi_1, \xi_2, \ldots, \xi_m\} \). Then

\[
Q(x) = \sum_{i=1}^{m} P[\xi = \xi_i]Q(x, \xi_i).
\]
Convexity of the recourse

Theorem

If \(f(x) \) is convex, and \(\alpha \geq 0 \), \(g(x) = \alpha f(x) \) is convex.

Theorem

If \(f_k(x), \ k = 1, 2, \ldots, K \), are convex functions, then \(g(x) = \sum_{k=1}^{K} f_k(x) \) is convex.

\(Q(x) \) is therefore a convex function w.r.t. \(x \).

What is happening in the continuous case?

We have the following result: if \(g(x, y) \) is convex w.r.t. \(x \), then \(\int g(x, y)dy \) is convex w.r.t. \(x \). Since

\[
Q(x) = \int_{\Xi} Q(x, t)dF(t),
\]

\(Q(x) \) is convex.
An example...

Consider the second-stage function $Q(x, \xi)$ defined as:

$$\min y^+ + y^- \text{ s.t. } y^+ - y^- = \xi - x, \ y^+ \geq 0, \ y^- \geq 0.$$

In other terms:

$$y = \begin{pmatrix} y^+ \\ y^- \end{pmatrix}, \quad q = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad W = \begin{pmatrix} 1 & -1 \end{pmatrix}, \quad h(\xi) = \xi, \quad T(\xi) = 1.$$

Dual:

$$\max (\xi - x)\pi \text{ s.t. } \pi \leq 1, \ -\pi \leq 1$$

or

$$\max (\xi - x)\pi \text{ s.t. } \pi + s_1 = 1, \quad -\pi + s_2 = 1, \quad s_1 \geq 0, \ s_2 \geq 0.$$
An example: optimality conditions

The recourse is simple, and the primal-dual/KKT conditions give

\[
\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \pi + \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}
\]

\[y^+ - y^- = \xi - x\]
\[y^+ \geq 0, \quad y^- \geq 0\]
\[s_1 \geq 0, \quad s_2 \geq 0\]
\[s_1 y^+ = 0, \quad s_2 y^- = 0.\]
An example (cont’d)

- The first condition implies that we cannot have $s_1 = s_2 = 0$.
- From the complementarity conditions, we have that $y^+ = 0$ or $y^- = 0$.
- We have to consider two cases:
 - $x \leq \xi$: in this situation, we have
 \[y^+ = \xi - x, \quad y^- = 0. \]
 - $x \geq \xi$: then,
 \[y^- = x - \xi, \quad y^+ = 0. \]
- Consequently,
 \[Q(x, \xi) = \begin{cases}
 \xi - x & \text{si } x \leq \xi, \\
 x - \xi & \text{si } x \geq \xi.
 \end{cases} \]
Graphically?

Assume that ξ can take the realizations 1, 2, 4.
Graphically (cont’d)
Graphically (cont’d)
What about $Q(x)$?

Assume that the three realizations have the same probability.

We have to consider 4 cases:

1. $x \leq 1$: $Q(x) = \frac{7}{3} - x$;
2. $1 \leq x \leq 2$: $Q(x) = \frac{5}{3} - \frac{x}{3}$;
3. $2 \leq x \leq 4$: $Q(x) = \frac{x}{3} + \frac{1}{3}$;
4. $4 \leq x$: $Q(x) = x - \frac{7}{3}$;
Graphically
Properties of $Q(x)$

We note that $Q(x)$ is convex and piecewise linear. As $Q(x)$ is a finite weighted sum of piecewise linear functions when the support of ξ is finite, we have the following result.

Theorem

For a stochastic program with fixed recourses where ξ has finite second-order moments,

(a) $Q(x)$ is a convex Lipschitz function and is finite over K_2;

(b) when ξ has a finite support, $Q(x)$ is piecewise linear.

Reminder: a function f is Lipschitz if there exists some $M < \infty$ such that for all x, y,

$$|f(x) - f(y)| \leq M\|x - y\|.$$
Differentiability of the recourse

Is $Q(x)$ also differentiable?

The recourse function is partially differentiable with respect to x_j at $(\hat{x}, \hat{\xi})$ if the directional derivative exists for the direction e_j. In other terms, there exists a function $\frac{\partial Q(x, \xi)}{\partial x_j}$ such that

$$
\frac{Q(\hat{x} + he_j, \hat{\xi}) - Q(\hat{x}, \hat{\xi})}{h} = \frac{\partial Q(x, \xi)}{\partial x_j} + \frac{\rho_j(\hat{x}, \hat{\xi}; h)}{h},
$$

with

$$
\frac{\rho_j(\hat{x}, \hat{\xi}; h)}{h} \rightarrow 0, \text{ as } h \rightarrow 0.
$$

We will assume from now that

$$
\nabla_x Q(x, \xi) = \left(\frac{\partial Q(x, \xi)}{\partial x_1}, \ldots, \frac{\partial Q(x, \xi)}{\partial x_n} \right)
$$
exists.
Differentiability of the recourse (cont’d)

What about the differentiability of $Q(x)$?

$$\frac{Q(\hat{x} + he_j) - Q(\hat{x})}{h} = \int_{\Xi} \frac{Q(\hat{x} + he_j, \xi) - Q(\hat{x}, \xi)}{h} dP$$

$$= \int_{\Xi \setminus N_{\delta}} \frac{\partial Q(\hat{x}, \xi)}{\partial x_j} dP + \int_{\Xi \setminus N_{\delta}} \frac{\rho_j(\hat{x}, \xi; h)}{h} dP,$$

where N_{δ} is measurable and $P[N_{\delta}] = 0$. Therefore, we have

Theorem

If $Q(x, \xi)$ is partially differentiable almost everywhere, if its partial derivative $\frac{\partial Q(\hat{x}, \xi)}{\partial x_j}$ is integrable and if the residual satisfies

$$(1/h) \int_{\Xi \setminus N_{\delta}} \rho_j(\hat{x}, \xi; h) dP \xrightarrow{h \to 0} 0,$$

then $\frac{\partial Q(\hat{x})}{\partial x_j}$ exists and

$$\frac{\partial Q(\hat{x})}{\partial x_j} = \int_{\Xi} \frac{\partial Q(\hat{x}, \xi)}{\partial x_j} dP.$$
But how to prove \(\frac{1}{p} \int_{\Xi \setminus N_\delta} \rho_j(\hat{x}, \xi; h) dP \overset{h \to 0}{\to} 0 \)?

If we stay in the linear framework with fixed recourse, and vectors \(\xi \) with finite second-order moments, we have seen that for \(\xi \) with finite support, \(Q(x) \) is piecewise linear. Therefore \(Q(x) \) is not differentiable.
Differentiability of the recourse: continuous case

If ξ is continuous, $Q(x)$ is obtained as an integral over the $Q(x, \xi)$’s, that are not differentiable as they are piecewise linear given ξ. However, it is x that has to be fixed, not ξ. It is possible to show that (the proof is quite technical)

Theorem

For a stochastic program with fixed recourse where ξ has finite second-order moments, if ξ is continuous, $Q(x)$ is differentiable over K_2.

Intuitively, the function $Q(x)$ is “smoothed” by the superposition of an infinite number of functions $Q(x, \xi)$.
Two-stage non-linear problems

Now consider the general program

\[
\min_{x \in X} E_\xi[f_0(x, \xi)] = \min_{x \in X} E_\xi[g_0(x, \xi) + Q(x, \xi)].
\]

Theorem

If \(g_0(\cdot, \xi) \) and \(Q(\cdot, \xi) \) are convex with respect to \(x \), \(\forall \xi \in \Xi \), and if \(X \) is a convex set, the aforementioned program is convex.

Proof.

For \(x, y \in X \), \(\lambda \in (0, 1) \) and \(z = \lambda x + (1 - \lambda)y \), we have

\[
g_0(z, \xi) + Q(z, \xi)
\leq \lambda(g_0(x, \xi) + Q(x, \xi)) + (1 - \lambda)(g_0(y, \xi) + Q(y, \xi)).
\]

The result follows by taking the expectation.
In a more standard form
Inspired from Birge et Louveaux, Section 3.4.

We consider the problem

\[\inf z = f^1(x) + Q(x), \]

s.t. \(g_i^1(x) \leq 0, \quad i = 1, \ldots, m_1, \)

\[g_i^1(x) = 0, \quad i = m_1 + 1, \ldots, m_1, \]

where \(Q(x) = E_\omega[Q(x, \omega)] \) and

\[Q(x, \omega) = \inf f^2(y(\omega), \omega), \]

s.t. \(t_i^2(x, \omega) + g_i^2(y(\omega), \omega) \leq 0, \quad i = 1, \ldots, m_2, \)

\[t_i^2(x, \omega) + g_i^2(y(\omega), \omega) = 0, \quad i = m_2 + 1, \ldots, m_2, \]

We say that the recourse is additive (why?).
In a more standard form (cont’d)

The functions $f^2(\cdot, \omega)$, $t^2_i(\cdot, \omega)$, and $g^2_i(\cdot, \omega)$ are continuous for any given ω, and measurable w.r.t. ω for any given first argument. This allows to prove that $Q(x, \omega)$ is measurable, and therefore that $Q(x)$ is well defined.

Reintroduce K_1, $K_2(\omega)$ and K_2.

\[
K_1 = \{ x \mid g^1_i(x) \leq 0, \ i = 1, \ldots, \overline{m}_1, \\
g^1_i(x) = 0, \ i = \overline{m}_1 + 1, \ldots, m_1 \},
\]

\[
K_2(\omega) = \{ x \mid \exists y(\omega) \text{ t.q. } t^2_i(x, \omega) + g^2_i(y(\omega), \omega) \leq 0, \ i = 1, \ldots, \overline{m}_2, \\
t^2_i(x, \omega) + g^2_i(y(\omega), \omega) = 0, \ i = \overline{m}_2 + 1, \ldots, m_2 \},
\]

\[
K_2 = \{ x \mid Q(x) < \infty \}.
\]
Remarks

The formulation is not yet totally general. We will consider more general forms when we will discuss sampling techniques.

Here, there is no more fixed recourse, but the first-stage decision x acts separately in the constraints. Goal: extend the previous results.

Questions: convexity, differentiability, optimality. We will also consider the concept of lower semi-continuity.