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1 KKT conditions

1.1 Second-order conditions
1.2 Example 1
A simple example, adapted from http://www.math.ubc.ca/~israel/m340/
Consider the problem
max f(x,y) =xy

s.t. m+y2§2
z,y >0

Note that the feasible region is bounded, and f(x,y) is continuous, so a global maximum exists.
Rewrite the problem as

min — zy

st.x+y*—2<0
—x <0
~y<0

The KKT conditions can be written as

Y+ —A=0
—r+2My—23=0
r+1y?—2<0

—x <0

-y <0
ME+y*—2)=0
Ao(—z) =0
As(—y) =0

Ai>0,i=1,2,3



or

—y+A—A=0

—z+2My—23=0

:L'+y2—2§0

ME+1y2-2)=0

Xz =0

A3y =0
A>0,1=1,2,3

z,y >0

Suppose A; = 0. Then
A2 = —y
A3 = —x

As xz,y, Ao, A3 > 0, this implies x =y = A1 = Ay = A3 =0.
But f(0,0) = 0, and it is clearly not a minimum as for instance f(1,1) = —1, and (1, 1) is feasible.
Take A\; # 0. Then, we must have = + 4> — 2 = 0, and therefore z or y is strictly positive.

Suppose z > 0. Then A3 = 0 and A\; = y. Since \; # 0, A3 = 0, and = = 2\1y = 2y%. Thus
3z

T
0= 2_2=z4-2="-2
T+y x—|—2 5

4 ¢2
Tr = — o —_
30 Y 3

Suppose z = 0, y > 0. Thus, y = v/2 and A3 = 0. But this also implies A\; = 0, while we have
assumed A1 # 0. Therefore, this case cannot happen.

and

Therefore, we have two KKT points: (%, \/g> and (0,0). (%, %) is the minimizer of the function.

Can we verify it using second-order optimality conditions? First, express V2, L(z,)). We have

9 (0 -1
vmcL(xv)‘) - <_1 2)\1>

Since the first principal minor is 0, the matrix cannot be positive definite.
For (0,0), we have two active constraints:
—x =0
—y=0
The Jacobian associated to these constraints is
-1
= (0 4)

and the LICQ is obviously verified. We can also check it by computing the rank of J:



[1]:

[1]:

[3]:

[3]:

[6]:

[6]:

[7]:

[7]:

[8]:

[8]:

using LinearAlgebra

J=1[-10; 0 -1]
rank (J)

J = [-1 1+1e-12; 1 -1]
rank(J,1e-8), rank(J)

(1, 2)

J = [-1 1+1e-12; 1-1e-8 -1]
rank(J,1e-8), rank(J)

1, 2)
eigen(J)

Eigen{Float64,Float64,Array{Float64,2},Array{Float64,1}}
eigenvalues:
2-element Array{Float64,1}:
-1.9999999950005
-4.9995000361846564e-9
eigenvectors:
2x2 Array{Float64,2}:
-0.707107 0.707107
0.707107 0.707107

methods (rank)

# 6 methods for generic function "rank":

[1] rank(S::SparseArrays.SparseMatrixCSC) in SuiteSparse.SPQR at C:\cygwin\home\
Administrator\buildbot\worker\package_win64\build\usr\share\julia\stdlib\v1.2\Su
iteSparse\src\spqr.jl:349

[2] rank(A::AbstractArray{T,2} where T; atol, rtol) in LinearAlgebra at C:\cygwi
n\home\Administrator\buildbot\worker\package_win64\build\usr\share\julia\stdlib\
v1.2\LinearAlgebra\src\generic.j1:838

[3] rank(x::Number) in LinearAlgebra at C:\cygwin\home\Administrator\buildbot\wo
rker\package_win64\build\usr\share\julia\stdlib\v1l.2\LinearAlgebra\src\generic. j
1:843

[4] rank(C::CholeskyPivoted) in LinearAlgebra at C:\cygwin\home\Administrator\bu
ildbot\worker\package_win64\build\usr\share\julia\stdlib\v1l.2\LinearAlgebra\src\
cholesky.jl:511

[5] rank(A::AbstractArray{T,2} where T, tol::Real) in LinearAlgebra at C:\cygwin
\home\Administrator\buildbot\worker\package_win64\build\usr\share\julia\stdlib\v
1.2\LinearAlgebra\src\deprecated. j1:4



[9]:

[9]:
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[6] rank(F::SuiteSparse.SPQR.QRSparse) in SuiteSparse.SPQR at C:\cygwin\home\Adm
inistrator\buildbot\worker\package win64\build\usr\share\julia\stdlib\v1l.2\Suite
Sparse\src\spqr.jl:348

The second-order conditions involve the computation of d’' V2, L(x*, \*)d for all d € N*, where

d'Vgi(z*) =0 ie&
+ _ [ ’
NT= {d 70 ‘ V(") <0, ieAlz*)NT

Unfortunately as we have also A* = 0 while A(z*) # 0, the strict complementarity condition does
not hold. It is then not trivial to characterize NT.

It is nevertheless easy to find a d € N* such that the second-order conditions are violated.

Note that the Jacobian matrix is

J(z) = (VTgi(z*), for i € A(z*))

Take indeed d = (1,1). Then Jd gives

d = [1.0; 1.0]
J=1[-1.00; 0 -1.0]
J*d

2-element Array{Float64,1}:
-1.0
-1.0

If we compute d? V2, L(x, \)d, we obtain

D2L = [0 -1.0; -1.0 0]
d'*D2L*d

-2.0
In others terms, (0,0) is not a second-order critical solution.

The Lagrange multipliers associated to (%, %) is

A= 0
0
and the active constraint is
r+y*—2=0

The Jacobian of the active set at (%, \/g> is



and again, it is trivial to verify the LICQ.

0 -1
2 Lx* \*) =

and the strict complementarity condition holds.

Thus,

But now,

Nt ={d+#0|Jd=0}.

Therefore, we have to consider the vectors d € R" such that

dT< 12>:0
24/3

In other words, d € Null(J), d # 0, where
7=(1 23)

[6]:

=
]

[1 2xsqrt(2/3) 1
nullspace(A)

=
1]

[6]: 2x1 Array{Float64,2}:
-0.8528028654224418
0.5222329678670935

w is a basis vector of A, of norm equal to 1:

[7]: norm(w)
[7]: 1.0

But

[8]: D2L[2,2] = 2xsqrt(2/3)
w'*D2L*w

[8]: 1x1 Array{Float64,2}:
1.33608531424537

Let d = Zz s Wq, d 75 0. Then

d'V2,L(z, Nd = 2w]V2, L(z,\w; > 0.

The necessary and sufficient second-order optimality conditions are then satisfied.
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1.3 Example 2

Use the Karush-Kuhn-Tucker conditions to solve

max KL
subject to 4K + L <8
K, L>0
The KKT conditions are
L—4X +X =0
K—)X+X3=0
AM(8—4K—L)=0
MK =0
AL =0
4K + L <8

K7L7A17)\27)‘3 Z 0

1.3.1 Case 1.

If Ay = 0, the first KKT condition says L + Ao = 0, which implies L = Ay = 0, and the second
says K 4+ A3 = 0, which implies K = A3 = 0. The KKT conditions are indeed satisfied with
K =L =X =X = A3 =0, and the objective value at K =L = 0is 0.

1.3.2 Case 2

If Ay > 0,4K + L = 8. Thus at least one of K and L is positive, implying that Ay or A3z is 0. If
Ao =0, L =4X\; > 0, but that implies A3 = 0. Similarly, if A3 = 0, K = Ay > 0, but that implies
Ao = 0. So we must have \g = A3 =0, L =41 and K = A\1. Then 4K + L =8, K = )\, L = Ay,
implying 4A\1 +4X1 = 8,s0 \; =1, K =1 and L = 4. The KKT conditions are satisfied with
K=1,L=4, 1 =1, A2 = A3 =0, and the objective value is 4.
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