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1 KKT
1.1 Exercise 1
Source: http://bdesgraupes.pagesperso-orange.fr/UPX/Master1/MNM1_exos_doc2.pdf

We consider a two products economy: a consumption good and work. The index 1 designs the
consumption good, with a price p1 > 0, while the index 2 denotes the work, with a salary p2 > 0.

The preferences of an economic agent, with workforce the lone ressource, can be represented with
a utility function

U(x1, x2) = 2 lnx1 + ln(3− x2).

It is assumed that there is a minimum consumption level x1 ≥ 1 while the work cannot exceed 3.
We want to determine the demand function of the consumption good and the job supply function.
Formulate the maximization program, give a geometric representation of the problem and solve it
by means of Karush-Kuhn-Tucker’s conditions. The solution estelle unique? Why?

We have to maximize the utility U(x1, x2) = 2 lnx1 + ln(3− x2) under the constraints x1 ≥ 1 and
x2 ≤ 3. Moreover, it is not possible to spend more than what is earned: p1x1 ≤ p2x2. Putting
everything together, we obtain the program

min
x

− 2 lnx1 − ln(3− x2)

s.t. x1 ≥ 1

x2 ≤ 3

p1x1 − p2x2 ≤ 0

x1, x2 ≥ 0.

We can reformulate the problem as

min
x

− 2 lnx1 − ln(3− x2)

s.t. − x1 + 1 ≤ 0

x2 − 3 ≤ 0

p1x1 − p2x2 ≤ 0

− x1 ≤ 0,−x2 ≤ 0.
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Therefore, the Lagrangian is

L(x, λ) = −2 lnx1 − ln(3− x2) + λ1(1− x1) + λ2(x2 − 3) + λ3(p1x1 − p2x2)− λ4x1 − λ5x2.

The KKT conditions can then be written as

− 2

x1
− λ1 + p1λ3 − λ4 = 0

1

3− x2
+ λ2 − p2λ3 − λ5 = 0

−x1 + 1 ≤ 0

x2 − 3 ≤ 0

p1x1 − p2x2 ≤ 0

−x1 ≤ 0

−x2 ≤ 0

λ1(−x1 + 1) = 0

λ2(x2 − 3) = 0

λ3(p1x1 − p2x2) = 0

λ4x1 = 0

λ5x2 = 0

λi ≥ 0, i = 1, . . . , 5

We cannot have x1 = 0, since it would violate the constraint −x1 + 1 ≤ 0, and therefore λ4 = 0.
Moreover, the constraint x1 ≥ 0 is implied by the constraint x1 ≥ 1. We can therefore simplify the
KKT system as

− 2

x1
− λ1 + p1λ3 = 0

1

3− x2
+ λ2 − p2λ3 − λ5 = 0

−x1 + 1 ≤ 0

x2 − 3 ≤ 0

p1x1 − p2x2 ≤ 0

−x2 ≤ 0

λ1(−x1 + 1) = 0

λ2(x2 − 3) = 0

λ3(p1x1 − p2x2) = 0

λ5x2 = 0

λi ≥ 0, i = 1, . . . , 5, λ4 = 0.

We can also exclude the case x2 = 0, as otherwise, the constraint p1x1− p2x2 contradicting x1 ≥ 1.
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Consequently, λ5 = 0, and the system can furter be simplified as

− 2

x1
− λ1 + p1λ3 = 0

1

3− x2
+ λ2 − p2λ3 = 0

−x1 + 1 ≤ 0

x2 − 3 ≤ 0

p1x1 − p2x2 ≤ 0

−x2 ≤ 0

λ1(−x1 + 1) = 0

λ2(x2 − 3) = 0

λ3(p1x1 − p2x2) = 0

λi ≥ 0, i = 1, 2, 3.

Observe also that x2 ̸= 3, as otherwise the derivative of the Lagrangian with respect to x2 would
be not defined. As a consequence, x2 < 3, λ2 = 0 and

1

3− x2
= p2λ3.

This implies λ3 ̸= 0, and p1x1 = p2x2.

Assume x1 = 1. Then
x2 =

p1
p2

.

If p1
p2

≥ 3, the solution violates the constraint x2 < 3, and we have have to reject it. Otherwise, the
conditions

x2 ≥ 0, p1x1 − p2x2 ≥ 0

are trivially satisfied, and from the second equality, we have

1

3− p1/p2
= p2λ3,

or, equivalently,
1

3p2 − p1
= λ3.

As λ3 ≥ 0, this equality can hold only if 3p2 − p1 > 0, or p1 < 3p2. The first equality gives

−2− λ1 + p1
1

3p2 − p1
= 0

or
λ1 =

−2(3p2 − p1) + p1
3p2 − p1

As we must have λ1 ≥ 0, this holds only if

−6p2 + 3p1 ≥ 0
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or
p1 ≥ 2p2.

Assume now x1 > 1. Then λ1 = 0 and
λ3 =

2

p1x1
.

This in turn implies
1

3− x2
− 2p2

p1x1
= 0,

or
p1x1 − 2p2(3− x2) = p1x1 + 2p2x2 − 6p2 = p1x1 − p2x2 + 3p2x2 − 6p2 = 0.

Therefore, x2 = 2. This leads to
x1 = 2

p2
p1

, λ3 =
1

p2
.

All the conditions are then satisfied at the condition 2p2
p1

> 1, or p1 < 2p2.

In summary, we have to consider three cases 1. p1 < 2p2: x1 = 2p2/p1, x2 = 2; 2. 2p2 ≤ p1 < 3p2:
x1 = 1, x2 = p1

p2
; 3. p1 ≥ 3p2: no solution.

1.2 Exercise 2
Consider the problem

min f(x, y) = x2 + 2y2

t.q. x+ y − b = 0

The Lagrangian is
L(λ, x, y) = x2 + 2y2 + λ(x+ y − b)

The Lagrangian is convex in (x, y) and reach a minimum when ∇x,yL(λ, x, y) = 0. Indeed,

∇2
x2,y2L(λ, x, y) =

(
2 0
0 4

)
which is positive definite (striclty diagonaly dominant).

∇x,yL(λ, x, y) =

(
2x+ λ
4y + λ

)
= 0

⇔

{
λ = −2x

λ = −4y

Therefore, ∇x,yL(λ, x, y) = 0 implies x = 2y, and from the constraint,

2y + y − b = 0

or
y =

b

3
and

x =
2b

3
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1.3 Counterexample to LICQ and Slater conditions
1.3.1 Example 1

LICQ Consider the optimization problem

min
x,y

y

s.t. (x− 1)2 + y2 = 1

(x+ 1)2 + y2 = 1

If we substract the second constraint to the first one, we obtain

(x− 1)2 − (x+ 1)2 = 0

or, equivantly
x2 − 2x+ 1− x2 − 2x− 1 = −4x = 0

Therefore, x = 0 and consecutively, y = 0. The feasible set is therefore the singleton {(0, 0)}

The Jacobian matrix of the constraints is

J(x, y) =

(
2(x− 1) 2y
2(x+ 1) 2y

)
Therefore,

J(0, 0) =

(
−2 0
2 0

)
The gradients of the active constraints are therefore linearly dependent. In other terms, the LICQ
does not hold.

[1]: using LinearAlgebra

J = [ -2 0 ; 2 0]
rank(J)

[1]: 1

The Lagrangian is

L(x, y, λ) = y + λ1((x− 1)2 + y2 − 1) + λ2((x+ 1)2 + y2 − 1)

and the KKT conditions are

2λ1(x− 1) + 2λ2(x+ 1) = 0

1 + 2λ1y + 2λ2y = 0

(x− 1)2 + y2 = 1

(x+ 1)2 + y2 = 1

Since only (0,0) is feasible, the two first equalities become

−2λ1 + 2λ2 = 0

1 = 0
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which obviously is not true.

We can show the duality properties by considering the problem

q(λ) = inf
(x,y)

{y + λ1((x− 1)2 + y2 − 1) + λ2((x+ 1)2 + y2 − 1)}

= inf
(x,y)

{y + λ1(x
2 − 2x+ y2) + λ2(x

2 + 2x+ y2)}

with λ = (λ1, λ2).

If λ = 0, q(0) = −∞.

If λ1 = −λ2. Then

q(λ) = inf
(x,y)

{y + λ1((x− 1)2 + y2 − 1)− λ1((x+ 1)2 + y2 − 1)}

= inf
(x,y)

{y + λ1(x
2 − 2x+ 1)− λ1(x

2 + 2x+ 1)}

= inf
(x,y)

{y − 4λ1x}

Therefore q(λ) = −∞.

Assume now that λ1+λ2 ̸= 0. If L(x, y, λ) is strongly convex with respect to (x, y), we can compute
the value of q(λ) by setting ∇(x, y)L(x, y, λ) = 0.

We have
∇(x, y)L(x, y, λ) =

(
2λ1(x− 1) + 2λ2(x+ 1)

1 + 2λ1y + 2λ2y

)
and

∇2(x2, y2)L(x, y, λ) =

(
2λ1 + 2λ2 0

0 2λ1 + 2λ2

)
Det

(
∇2(x2, y2)L(x, y, λ)

∣∣ = 4(λ1 + λ2)
2 > 0.

If λ1 + λ2 < 0, L is strongly concave and q(λ) = −∞.

If λ1 + λ2 > 0, L is strongly convex and q(λ) achieves its minimum at the zero of the gradient.

In summary, if λ1 + λ2 ≤ 0, q(λ) = −∞. Otherwise q(λ) is finite.

Assume λ1 + λ2 > 0. ∇(x, y)L(x, y, λ) = 0 if and only if{
x = λ1−λ2

λ1+λ2

y = −1
2λ1+2λ2
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Substituing in q(λ), we obtain

q(λ) = − 1

2(λ1 + λ2)
+ λ1

((
λ1 − λ2

λ1 + λ2
− 1

)2

+
1

4(λ1 + λ2)2
− 1

)
+ λ2

((
λ1 − λ2

λ1 + λ2
+ 1

)2

+
1

4(λ1 + λ2)2
− 1

)

= − 1

2(λ1 + λ2)
+ (λ1 + λ2)

(
1

4(λ1 + λ2)2
− 1

)
+ 4

λ1λ
2
2

(λ1 + λ2)2
+ 4

λ2
1λ2

(λ1 + λ2)2

= − 1

2(λ1 + λ2)
+

1

4(λ1 + λ2)
− (λ1 + λ2) + 4λ1λ2

λ1 + λ2

(λ1 + λ2)2

= − 1

4(λ1 + λ2)
+

−(λ1 + λ2)
2 + 4λ1λ2

λ1 + λ2

= − 1

4(λ1 + λ2)
+

−λ2
1 − λ2

2 + 2λ1λ2

λ1 + λ2

= − 1

4(λ1 + λ2)
− (λ1 − λ2)

2

λ1 + λ2

=
−1− 4(λ1 − λ2)

2

4(λ1 + λ2)

Therefore q(λ) < 0, but supλ q(λ) = 0 as when λ1 = λ2 → +∞, q(λ) → 0. The strong duality does
hold, but asymptotically.

Consider the variant

min
x,y

y

s.t. (x− 1)2 + y2 ≤ 1

(x+ 1)2 + y2 ≤ 1

Since y2 ≥ 0, we deduce the a necessary feasibility condition is{
(x− 1)2 ≤ 1

(x+ 1)2 ≤ 1

But if x ̸= 0, x− 1 or x+1 is strictly greater than 1, so one of the conditions is violated. Therefore
we must have x = 0 and y = 0.

Thus, the set {(x, y) | (x − 1)2 + y2 < 1, (x + 1)2 + y2 < 1} is empty, and the Slater CQ is not
satisfied.

It is possible to show that the strong duality again asymptotically holds.

First note that the Lagrangian expression is the same, but we now must have λ1 > 0, λ2 > 0, and
therefore q(λ) < 0. But if we set λ1 = λ2 and take the limit as λ1 → +∞, we have

lim
λ1→+∞

q(λ1, λ1) = 0.

In other words, we cannot find a finite dual solution, but the strong duality still holds.

In both cases, we cannot find a finite dual solution by solving the KKT conditions.
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Example 2 Consider the problem

min x+ y

t.q. y ≥ 0

y ≤ x3

The second constraint implies x ≥ 0, and therefore, the solution is trivially (0, 0).

The dual Lagrangian function is

q(λ) = inf
x,y

x+ y − λ1y + λ2(y − x3) = inf
x,y

x(1− x2λ2) + y(1 + λ2 − λ1)

Then
∇(x,y)L(x, y, λ) =

(
1− 3x2λ2

1− λ1 + λ2

)
If 1−λ1+λ2 ̸= 0, there is no solution to ∇(x,y)L(x, y, λ) = 0, and it is easy to see that q(λ) = −∞.

If 1− λ1 + λ2 = 0,
L(x, y, λ) = x(1− x2λ)

and again q(λ) = −∞.

Therefore there is an infinite duality gap.

The LICQ does not hold as, at (0, 0), both constraints are active and the Jacobian matrix of the
constraints is

J(x, y) =

(
0 −1

−3x2 1

)
Therefore,

J(0, 0) =

(
0 −1
0 1

)
The KKT system is

1− 3x2λ2 = 0

1− λ1 + λ2 = 0

−y ≤ 0

y − x3 ≤ 0

λ1(−y) = 0

λ2(y − x3) = 0

λ1, λ2 ≥ 0

The first equality implies λ2 ̸= 0 and therefore y = x3. The first equality also implies x ̸= 0, thus
y ̸= 0 and λ1 = 0. Therefore, from the second equality, λ2 = −1, in contradiction with λ2 ≥ 0.
Therefore, the system has no solution.
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1.3.2 Example 3

Consider the convex problem

min
x,y

e−x

t.q. x2/y ≤ 0

x, y ≥ 0.

The constraint
x2

y
≤ 0

is satisfied for x = 0 et y > 0 only.

The feasible set is therefore {(x, y) |x = 0, y > 0}, which is convex.

Similarly, the objective function is convex, and thus, we are facing a convex problem.

However, since no point such that x > 0 is feasible, the Slater condition is not satisfied for the
constraints given in the given form.

As x = 0 for any feasible point, the objective function is equal to 1 whatever the feasibke point
considered, and therefore any feasible solution is also optimal, with the value 1 being optimal.

The Lagrangian is
L(x, y, λ) = e−x + λ1x

2/y − λ2x− λ3y

and the dual problem is

max
λ

q(λ) = inf
x,y

L(x, y, λ)

t.q. λ ≥ 0.

In order to evaluate q(λ), search (x, y) tel que

∇x,yL(x, y, λ) =

(
−e−x + 2λ1x/y − λ2

−λ1x
2/y2 − λ3

)
= 0

If λ3 ̸= 0, L(0, y, λ) = 1 − λ3y and q(λ) = −∞, by letting y going to +∞. Observe also that for
x = 0, the second gradient component of the Lagrangien is equal to −λ3 and therefore cannot be
equal to 0.

Consider now the case λ3 = 0. Note that now, the second gradient component is equal to 0 for any
x = 0.

If λ1 ̸= 0, λ1 > 0, and we must have x = 0 and λ2 = 1 in order to find a root of the Lagrangian
gradient. If λ2 ̸= 1, then q(λ) has no finite extremum as then, the first component of ∇x,yL(x, y, λ)
becomes, for x = 0, −1 − λ2. By taking y < 0 and letting x go to +∞, we get q(λ) = −∞. The
same observation holds for λ2 = 1, and thus the gradient root does not correspond to a global
minimizer.

If λ1 = 0, L(x, y, λ) = e−x − λ2x. As x grows to +∞, we observe that q(λ) = 0 if λ2 = 0, −∞
otherwise.
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The maximum of q(λ) is therefore equal to 0, and is obtained when λ = 0.

Thus, there is a duality gap equal to 1.

We sometimes keep the non-negativity constraints when building the Lagrangian. For the example,
we then have

L(x, y, λ) = e−x + λx2/y

and
q(λ) = inf

x,y≥0
L(x, y, λ)

In this case, if λ ≥ 0, L(x, y, λ) > 0 and q(λ) = 0, for instance by taking x = t and y = t3, as then

L(x, y, λ) = −e−t + λt2/t3 = −e−t + λ1/t

and we can let t go to +∞.

The duality gap is therefore again equal to 1.

[ ]:
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