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Introduction

This is an update of what I began in 1996 and is posted with the ICS Mathematical Pro-
gramming Glossary[4] since October 2008. I follow the terms and notation in the Glossary,
presenting examples in Linear Programming (LP), Integer Programming (IP), Dynamic Pro-
gramming (DP), Nonlinear Programming (NLP), Multiple-Objective Programming (MOP),
and Special Forms (SF). These comprise the sections that follow, but they are not a partition
of mathematical programming in general. Many problems overlap; for example, a problem
could be represented as an LP and a DP. Further, network problems are scattered in all of
these. I placed an entry where I thought it should go for what we teach. Thus, most network
problems are in the LP section, and a dynamic problem is in DP only if dynamic programming
is the underlying methodology, not just that the model is dynamic.

The use of counterexamples to disprove some result that seems as though it is true is an old
technique to deepen our understanding of the underlying concepts. One of the most impressive
books I read in graduate school was Counterexamples in Analysis[2], by Gelbaum and Olmsted.
Since then, similar books have appeared[1, 3, 5, 6, 7, 8, 9].

Pedagogically, one could put a theorem out to the students of the form: P →Q, then list some
counterexamples to Q. The goal is for the student to discover P that makes Q true. What are
the properties of the pathologies? Some myths are counterexamples to previously-published
claims. Although that renders the original claim obsolete (unless repaired), it is included to
demonstrate the construction of a counterexample in what appeared to be a valid result, not
only to the author but also to at least two referees and one editor. What property did they
all miss, and where does it present a flaw in the alleged proof?

The myths and counterexamples I present here are not restricted to mathematical constructs.
I have also included some practices that have grown in the folklore to dispel myths about
“good” models, solutions, and computational efficiency. One class of myth to challenge our
intuition is that the objective value cannot worsen when we improve resources and/or relax
constraints. I list these as better is worse in the index. A related type of myth is more for
less, also in the index.

I use fairly standard notation for mathematical objects (though they have no universal stan-
dard), some of which are shown in Table 1.
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Table 1: Notation

(a, b) open interval {x : a < x < b}

[a, b] closed interval {x : a ≤ x ≤ b}

� set of real values (−∞,∞)

� set of integer values {. . . ,−2,−1, 0, 1, 2, . . . }

� set of rational values
{
p
q : p, q ∈ � : q > 0

}
I use �+,�+,�+ to restrict the values to be non-negative. For example, �+ = [0,∞). I use
�n,�n,�n to denote n-vectors whose coordinates belong to the indicated set. For example,
�n = {x = (x1, . . . , xn) : xj ∈ � for j = 1, . . . , n}. These can be combined. For example,
�n+ = {x ∈ �n+ : xj ∈ � for j = 1, . . . , n}.

Following the Glossary notation, the general form of a mathematical program is given by:

min f(x) : x ∈ X, g(x) ≥ 0, h(x) = 0,

where ∅ 6= X ⊆ �n, f : X→�, g : X→�m, h : X→�M . (The sense of optimization could
be max.) The functional relations are called constraints.

I welcome suggestions for future versions.
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Linear Programming
The general form of a linear program (LP) is the optimization of a linear function subject to
a system of linear equations and inequalities. The standard form is

min cx : Ax = b, x ≥ 0,

where rank(A) = m = number of equations. This form is particularly useful when considering
the simplex method.

When talking about duality, I use the canonical form:

min cx : Ax ≥ b, x ≥ 0.

(No rank condition on A.) This renders the dual prices non-negative, giving the dual canonical
form:

max πb : πA ≤ c, π ≥ 0.

Unless stated otherwise, or implied from context, the LP in question could be any linear
system; it need not be in standard or canonical form.

The standard simplex method is the original pivot-selection rule by Dantzig, applied to the
standard form — a variable with the greatest reduced cost (rate of improvement) is chosen to
enter the basis. An alternative is the best-gain criterion, which evaluates the actual gain of
each candidate to enter the basis by computing its change in level and multiplying by the rate
of improvement.

A constraint is redundant if its removal does not change the set of feasible points. An inequality
is an implied equality if it must hold with equality in every feasible solution.

LP Myth 1. All redundant constraints can be removed.

The reason this is incorrect is that once a redundancy is removed, the other constraints may
no longer be redundant.

Counterexample. x, y ≥ 0 and x− y = 0. Each non-negativity constraint is redundant, but
they cannot both be removed. The redundancy of x ≥ 0 follows from the equation and the
non-negativity of y: x = y ≥ 0.

Practical use was first reported by Tomlin and Welch[76], and that led to a theory of common
dependency sets by Greenberg[36].

LP Myth 2. A degenerate basis implies there is a (weakly) redundant constraint.

Counterexample. Consider y ≥ 0, x ≥ 1, x + y ≤ 1. The only feasible point is (x, y) =
(1, 0) with slack and surplus variables both 0. Thus, each of the possible feasible bases is
degenerate, but no constraint is redundant.

Sierksma and Tijssen[71] generalized this: If a face of dimension n− 1 or n− 2 is degenerate,
the defining linear inequalities are not minimal — that is, the system must contain either a
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redundant inequality or an implied equality. Note the special conditions on dimension. For
n ≥ 3, it cannot apply generally to an extreme point (face of 0 dimension). A pyramid is
a counterexample for n = 3. The pyramid’s top extreme point is degenerate because it is
the intersection of 4 planes, but none of the defining inequalities is redundant or an implied
equality.

LP Myth 3. If an LP has an optimal solution, there is an extreme point of the feasible region
that is optimal.
Counterexample. Arsham[3, #9] provides the following: max x1 + x2 : x1 + x2 ≤ 5. The

feasible set is a polyhedron with no extreme point. This occurs because we do not require
the variables to be non-negative.

The myth’s statement is true when the LP is in standard form. Converting the example to
standard form increases the dimension:

max u1 − v1 + u2 − v2 :
u1 − v1 + u2 − v2 + x3 = 5,

u1, v1, u2, v2, x3 ≥ 0,

where we have augmented the slack variable, x3, and we have partitioned each of the original
variables into their positive and negative parts:

x1 = u1 − v1 and x2 = u2 − v2.

(Be sure to see LP Myth 13.)

In this higher-dimensional space, it is true that an extreme point is optimal — in particular,
(u1, v1, u2, v2, x3) = (5, 0, 0, 0, 0). In fact, there are three extreme points; the other two are
(0,0,5,0,0) and (0,0,0,0,5). Each of these three extreme points is optimal for some objective
value coefficients, spanning all that render the LP optimal (vs. unbounded).

LP Myth 4. If one knows that an inequality constraint must hold with equality in every
optimal solution, it is better to use the equality in the constraint because it will reduce the
solution time.

First, it is not necessarily the case that it will reduce the solution time — the solver could
get a first feasible solution faster with the inequality formulation. Second, even if the tighter
version solves faster (perhaps by pre-solve reduction), it is generally better to let the model tell
you the answer than for you to wire the result. Your intuition could be wrong, or there could
be a data entry error that goes undetected with the equality constraint. A better approach is
to attach a back-end report to examine all things “known” to be true and flag the violations.
Thus, if an inequality is slack and you expected it to be tight, you can investigate why the
model did what it did.

LP Myth 5. In a dynamic LP, each period should be the same duration.

This is tacitly implied in many textbook examples. The reality is that we know more about
what is likely to happen tomorrow than next year. In general, data can provide forecasts for
demands, supplies, and other model parameters, but the accuracy tends to be less as the time
is further into the future. One may have, for example, a 5-year planning model with the first
12 time periods being months, the next 4 periods being quarters, and the last 3 being years.

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]
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LP Myth 6. Maximizing an absolute value can be converted to an equivalent LP.

Consider the conversion of the NLP with free variables:

max
∑
j

cj |xj | : Ax = b

to a standard LP:

max
∑
j

cjx
+
j +

∑
j

cjx
−
j : Ax+ −Ax− = b, x+, x− ≥ 0.

Shanno and Weil[70] point out that this equivalence is not correct if c 6≤ 0.

Counterexample. max |x| : −4 ≤ x ≤ 2, where x is a free variable. (Add slack variables to
put into equality form.) The associated LP is

max x+ + x− : −x+ + x− + s1 = 4, x+ − x− + s2 = 2, x+, x−, s ≥ 0.

The LP is unbounded (let x+ = 4 + θ, x− = θ→∞), but the original NLP is optimized by
x = −4.

Shanno and Weil note that the unboundedness problem is avoided with the simplex method
by adding the restricted basis entry condition: x+

j x
−
j = 0 for all j. When c ≤ 0, this condition

is satisfied anyway, but for cj > 0, it must be forced.

Rao[60] points out that c ≥ 0 means the objective function is convex, which implies there is an
extreme point that is optimal, but there could be (and generally are) local maxima. On the
other hand, c ≤ 0 means the objective function is concave, so local maxima is not an issue.

Kaplan[48] proposed the following modification. Bound the variables by a single constraint:∑
j

x+
j +

∑
j

x−j ≤M,

where M is large enough to make this redundant when the NLP has a solution. Then, he
purported that if this constraint is not active at the LP optimum (that is, if the slack variable
is basic), it solves the NLP. If it is active (that is, if the slack variable is nonbasic), the NLP
is unbounded. Unfortunately, this simple fix does not always work.

Counterexample. Ravindran and Hill[61] provide the following:

max |x1| : x1 − x2 = 2.

Kaplan’s LP is:
max x+

1 − x
−
1 : x+, x−, s ≥ 0,

x+
1 − x

−
1 − x

+
2 + x+

2 = 2
x+

1 + x−1 + x+
2 + x+

2 + s = M.

The simplex method obtains the basic solution with x+
1 = 2 and s = M − 2 (and all other

variables zero). Thus, this does not solve the NLP. The problem here is that the LP can
have only two basic variables, and the original polyhedron has no extreme points.
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The unboundedness is not the real issue. Ravindran and Hill note that we could add the
constraint −6 ≤ x1 ≤ 4. Then, the LP solution is the same, but the original problem is solved
by x = (−6,−8).

For c ≤ 0, the NLP is equivalent to minimization of the form:

min
∑
j |αjxj − βj | : x ∈ P,

where P is the polyhedron. This is equivalent to the LP:

min
∑
j vj : x ∈ P, vj ≥ αjxj − βj , vj ≥ −αjxj + βj .

This is the common LP equivalent, and it uses two properties: |z| = max{z,−z} and min{v :
v = |z|} = min{v : v ≥ |z|}. This latter property fails for maximization. The Shanno-Weil
example would become

max v : v ≥ x, v ≥ −x, −6 ≤ x ≤ 4,

which is unbounded.

Opportunity Knocks
There remains the issue of how we can use LP to maximize a linear function of absolute values,
where the coefficients (c) could be positive. For c > 0, we know this is an instance of the hard
problem of maximizing a convex function on a polyhedron, and there can be local maxima at
some vertices. However, is there some special structure to exploit?

LP Myth 7. The expected value of the second-stage of a stochastic linear program with
recourse is a differentiable function, provided that the random variable is continuous.

My thanks to Suvrajeet Sen for suggesting this.

The 2-stage recourse LP model is defined here as:

min cx+ Eθ[h(x, θ)] : x ≥ 0, Ax = b,

where θ is a random variable, and the recourse function is the LP value:

h(x, θ) = min{Cy : y ≥ 0, By = θ − Tx}.

The myth asserts that h is differentiable in x, provided the probability distribution function of
θ is continuous. (It is obvious that h is not generally differentiable for a discrete distribution
function since then h is piece-wise linear.)

Counterexample. Sen[69] provides the following: let θ = (d1, d2, d3) be demands in the
second stage for three destinations, and let the first stage determine supplies from two
sources, so h is the optimal value of a transportation problem:

h(x, θ) = min
∑
i,j Cijyij : y ≥ 0,

yi1 + yi2 + yi3 ≤ xi for i = 1, 2
y1j + y2j ≥ dj for j = 1, 2, 3.
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Suppose d1, d2 are deterministic and d3 ∈ (0, D) for some finite D > 0. Let the unit
shipping cost matrix be

C =
[
0 1 2
3 2 2

]
.

Suppose x̄ = (d1, d2 +D). Then, the following are alternative dual-optimal solutions:

λ = (−3, 0, 3, 2, 2) and λ′ = (−1, 0, 1, 2, 2).

(Supply prices are −(λ1, λ2), and demand prices are (λ3, λ4, λ5).) Sen proves that these
are optimal for all d3 ∈ (0, D). The subgradient of h thus includes subgradients (−3, 0)
and (−1, 0), so the recourse function is not differentiable at x̄.

Sen extends earlier works to establish necessary and sufficient conditions for h to be differen-
tiable.

LP Myth 8. new For a multistage stochastic program with non-anticipativity constraints,
there exist optimal dual multipliers that are also non-anticipative. next new B

My thanks to Suvrajeet Sen for suggesting this.

Non-anticipativity constraints require recourse variables to be independent of the history of
outcomes. (See Beasley[7] for a succinct introduction and example.)

Counterexample. Higle and Sen[43] consider a 3-stage LP:

min
3∑
t=1

ctxt : −1 ≤ xt ≤ 1, t = 1, 2, 3, xt ≥ xt+1, t = 1, 2.

Let c be random with four equally-likely values:

c ∈ {(1, 1, 1), (1, 1,−1), (1,−1, 1), (1,−1,−1)}.

Indexing the objective coefficients as cit for scenario i at stage t, let xit be the associated
decision variable. Thus, the recourse LP is

min 1
4

4∑
i=1

3∑
t=1

citxit : −1 ≤ xit ≤ 1, t = 1, 2, 3, xit ≥ xi t+1, t = 1, 2

x11 = x21 = x31 = x41, x12 = x22, x32 = x42, x13 = x33, x23 = x43, (LP.1)

where (LP.1) comprise the non-anticipativity constraints. These are due to the common-
ality: ci1 = 1 for all i = 1, . . . , 4, c12 = c22, and c32 = c42.
The scenario tree, shown on the right, illustrates
that each path through time corresponds to a sce-
nario. There is a bifurcation at a node when there
is an event that changes the cost coefficient. For
example, at t = 1, events can cause c2 = 1 or
c2 = −1. However, to avoid clairvoyance, the de-
cision variable, x2, must be the same for scenar-
ios 1 and 2, and for scenarios 3 and 4, since the
cost is the same within each of those groupings.
That is the “commonality” that yields the non-
anticipativity constraints.
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Let u = (u1, u2, u3) denote the dual variables for the non-anticipativity constraints associ-
ated with t = 1, and let v = (v1, v2) be those associated with t = 2. The myth asserts that
the dual variables associated with the non-anticipativity constraints are themselves non-
anticipative — that is, u1 = u2 = u3. However, the dual solution has u = ( 1/4 ,− 1/2 ,− 1/4 ),
giving a contradiction.
Higle and Sen model the non-anticipativity constraints differently, but primal-equivalent
to (LP.1):

xi1 − 1
4

∑4
k=1 xk1 = 0 for i = 1, . . . , 4 (LP.2a)

xi2 − 1
2 (x12 + x22) = 0 for i = 1, 2 (LP.2b)

xi2 − 1
2 (x32 + x42) = 0 for i = 3, 4 (LP.2c)

The dual variables now measure the rate of deviation from a group’s average. Intuition
may suggest that this averaging induces a non-anticipative dual stochastic process.
However, an optimal dual value has u = (0, 0, 3/8 , 1/8 ) and v = (0, 1/4 , 0, 1/2 ), which
contradict non-anticipativity. (Higle and Sen obtain different optimal dual values, but
they show all optimal dual values are non-anticipative.)

Higle and Sen prove that the optimal non-anticipativity dual variables are non-anticipative if,
and only if, the expected value of perfect information equals zero. In the example, EV PI =
−1 1

2 .

LP Myth 9. A feasible infinite-horizon LP can be approximated by truncating to a finite
horizon.

The infinite-horizon model has the form:

f∗ = max
∞∑
t=0

ctxt : x ≥ 0, A0x0 = b0, At+1xt+1 −Btxt = bt, for t = 0, 1, . . .

One associated finite-horizon model is the truncation:

f∗(T ) = max
∑T
t=0 c

txt : x ≥ 0, A0x0 = b0,

At+1xt+1 −Btxt = bt, for t = 0, 1, . . . , T − 1,
xT ∈ T ,

where T is an end condition.

Consider a stationary model, where At = A, Bt = B, and bt = b for all t. One could define
xt = xT for all t > T , in which case the end condition simply requires (A − B)xT = b. For
this case, Grinold[39] provides the following:

Counterexample. Let A = 1, B = 1.6, b = 1, and ct = ( 1
4 )t. Then, xt = 1.6t+1−1

0.6 is feasible,
and

∑∞
t=0 c

txt = 2.222 . . . However, (A−B)x = 1, x ≥ 0 has no solution.

Grinold provides another counterexample, where xT is not required to satisfy (A−B)xT = b.
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Counterexample. Let ct =
(

( 1
2 )t, ( 1

2 )t, 0, 0
)
, b =

(
1
0

)
,

A =
[

1 0 1 0
0 −1 0 1

]
, B =

[
0 −1 0 0
0 1 0 0

]
.

The truncated-horizon model is

max
∑T
t=0 ( 1

2 )t (xt1 + xt2) : x ≥ 0
x0

1 + x0
3 = 1

− x0
2 + x0

4 = 0
xt1 + xt3 + xt−1

2 = 1 for t = 1, . . . , T
− xt2 + xt4 − xt−1

2 = 0 for t = 1, . . . , T

Let xt = (1, 0, 0, 0)T for t = 0, . . . , T − 1 and xT = (1, θ, 0, θ). This is feasible for all θ > 0,
and the objective value satisfies

f∗(T ) ≥
T∑
t=0

ctxt =
T∑
t−0

( 1
2 )t + θ ( 1

2 )T = (θ − 1) ( 1
2 )T + 2.

Letting θ→∞, we conclude that the truncated LP is unbounded for all finite T . However,
the infinite-horizon objective is bounded, with optimal value 2.

Grinold provides greater analysis and conditions for finite-horizon approximations. He extends
his work by analyzing four methods to correct end effects[40]. Also see Evers[24]. For more
infinite-horizon myths see DP entries (starting at p. 100).

Even when the myth’s statement holds, a software anomaly can arise with discounting.

Counterexample. The following infinite-horizon model is unbounded:

max
∞∑
t=0

( 1
2 )t xt : x ≥ 0, xt +

t−1∑
s=0

xs ≤ 2t+1, for t = 0, 1, . . .

Letting xt = 2t, each constraint holds and the objective equals ∞. An associated finite-
horizon model is the truncation:

f∗(T ) = max
T∑
t=0

( 1
2 )t xt : x ≥ 0, xt +

t−1∑
s=0

xs ≤ 2t+1, for t = 0, 1, . . . , T.

For T sufficiently large, the objective coefficient, ( 1
2 )t, becomes zero in the computer. Thus,

the computed value of f∗(T ) is bounded. In particular, both Matlab R© and cplex R© reach
this at T = 20, giving f∗(T ) = 43 for all T ≥ 20.

We can add stationary bounds, xt ≤ U for t > τ , so the infinite-horizon model is bounded.
For τ > 20, the problem persists: the truncated optima converge to the incorrect limit due
to the computer’s limitation of precision.

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]
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LP Myth 10. The duality theorem applies to infinite LPs.

An infinite LP is one with an infinite number of variables and constraints, which arises naturally
in infinite-horizon models. The duality theorem includes the following implications:

1. If x is primal-feasible, y is dual-feasible, and they satisfy complementary slackness, they
are optimal in their respective LPs.

2. If the primal and dual have optimal solutions, their objective values are equal.

Counterexample. Hopkins[46] rebukes the first implication with the following:

min x1 : x ≥ 0,
x1 − x2 ≥ 1

x2 − x3 ≥ 0
. . .

Its dual is given by:
max y1 : y ≥ 0,

y1 ≤ 1
−y1 + y2 ≤ 0

− y2 + y3 ≤ 0
. . .

A primal-feasible solution is x = (2, 1, 1, . . . ); a dual-feasible solution is y = (1, 1, . . . ). They
satisfy complementary slackness, but x is not optimal for the primal since x = (1, 0, 0, . . . )
is also primal-feasible with lower objective value.

Hopkins identifies the cause: the sequence
{∑T

i=1
∑T
j=1 yiAijxj

}
T →∞

is not absolutely con-

vergent. (Hopkins proves that absolute convergence is a sufficient condition for duality to
hold.)

Counterexample. Grinold and Hopkins[41] rebuke the second implication with the following:

min
∑∞
t=0 ( 1

2 )t zt : x0 = 1, y0 + z0 = 1
−2yt−1 + xt = 0, −2xt−1 + yt + zt = 0 for t = 1, 2, . . .

xt, yt, zt ≥ 0 for t = 0, 1, . . .

The objective is bounded below by zero. A feasible solution is xt = yt = 2t, zt = 0, and it
is optimal since its objective value is zero.
The dual is

max u0 + v0 :
ut − 2vt+1 ≤ 0, vt − 2ut+1 ≤ 0, vt ≤ ( 1

2 )t , for t = 0, 1, 2, . . .

Since v0 ≤ 1 and u0 ≤ 2v1 ≤ 1, the objective value is bounded above by 2. A feasible
solution is ut = vt = ( 1

2 )t, and it is optimal since its objective value is 2.
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Moreover, the complementary slackness conditions are satisfied:

(ut − 2vt+1)xt = 0, (vt − 2ut+1)yt = 0, (vt + ( 1
2 )t)zt = 0, for t = 0, 1, 2, . . .

The failure of equal objective values can be attributed to the correction by ut+1, vt+1 in
the dual. The truncation yields an optimal value of zero because the last constraints do
not have that correction:

uT ≤ 0, vT ≤ 0.

This back-propagates to render u0 = v0 = 0.

Also see Evers[24, §6.9,§6.20].

LP Myth 11. If the optimal value of a slack variable is zero, the associated constraint is
binding.

As suggested by H. P. Williams, this myth reflects confusion in terminology. An inequality
constraint is active at a point if it holds with equality; it is binding if its removal changes the
solution.

Counterexample. max x1 : x ≥ 0, x1 + 2x2 ≤ 3, 2x1 + x2 ≤ 3, x1 + x2 ≤ 2.
The (unique) optimal solution is at x∗ = (1, 1), and all slack variables are zero. Although
the last constraint is active, it is not binding (it is redundant).

LP Myth 12. If the primal and dual are both degenerate, they cannot both have alternative
optima.

Suggested by H. P. Williams, this myth violates the established fact:

If the primal and dual LPs have optimal solutions, they have a strictly complemen-
tary optimal solution.

Counterexample.
Primal Dual

max 0x : x ≥ 0, x1 ≤ 0, x2 ≥ 0. min 0π : π ≥ 0, π1 ≥ 0, π2 ≤ 0.

Primal optima are of the form (0, x2) : x2 ≥ 0; dual optima are of the form (π1, 0) : π1 ≥ 0.

LP Myth 13. It is a good idea to convert free variables to the standard form by the expression:
x = u− v, where u is the positive part and v is the negative part of x.

Too often students (and new graduates) do this, perhaps thinking it is necessary due to the
text they used. However, all solvers handle free variables directly.

For a simplex method, the conversion requires a change in basis whenever x needs to change
sign. This is an unnecessary pivot, wasting time and space. Recognition of free variables allows
the solver to put all free variables into the basis at the start (dealing with linear dependence,
if that should be a problem). Once in the basis, a free variable cannot block an entrant, so it
simply stays there. Some solvers also use the free variable to eliminate a row (and restore it
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after a solution is obtained). Thus, it is never a good idea to perform this conversion when
using a simplex method.

For an interior method, this causes the optimality region to be unbounded (if it is not empty).
Whatever the value of x∗, there is an infinite number of values of u∗ and v∗ that yield the
same difference, u∗ − v∗. During the iterations, it is not unusual for u and v to diverge, while
maintaining a constant difference, and this divergence can cause numerical problems for the
algorithm (especially for convergence detection).

LP Myth 14. The standard simplex method does not select a dominated column to enter the
basis.

Consider LP in canonical form:

max cx : x ≥ 0, Ax ≤ b.

A column, j, is dominated if there exists k 6= j such that

ck ≥ cj and Ak ≤ Aj .
Counterexample. Blair[13] provides the following:

max 5x1 + 3x2 + x3 + x4
x1 − x2 + 5x3 + 3x4 ≤ 10

3x1 + x2 + x3 + x4 ≤ 40
−2x1 + x2 − 3x3 − 3x4 ≤ 10

x ≥ 0.
After adding slack variables to convert to standard form, the first simplex tableau is:

Level x1 x2 x3 x4 s1 s2 s3
← 10 1 −1 5 3 1 0 0

40 3 1 1 1 0 1 0
10 −2 1 3 3 0 0 1
0 5 3 1 1 0 0 0

↑

The first pivot exchange is s1 ← x1:
Level x1 x2 x3 x4 s1 s2 s3

10 1 −1 5 3 1 0 0
← 10 0 4 −14 −8 −3 1 0

30 0 −1 13 9 2 0 1
50 0 8 −24 −14 −5 0 0

↑

Column 3 is dominated by column 4, but it enters the basis next:

Level x1 x2 x3 x4 s1 s2 s3

12 1
2 1 0 1 1

2 1 1
4

1
4 0

2 1
2 0 1 −3 1

2 −2 − 3
4

1
4 0

32 1
2 0 0 9 1

2 7 1 1
4

1
4 1

69 0 0 4 2 1 −2 0
↑
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One way to look at Blair’s example is that the dominance conditions are not generally preserved
as the basis changes.

Another view is to drop the first two columns entirely
and consider a 2-variable LP with an initial basis that is
slack. The values of A do not affect the selection of the
basis entrant. With equal costs, the first variable (x3) is
selected, which is dominated by the second (x4).

Level x3 x4 s1 s2 s3
10 5 3 1 0 0
40 1 1 0 1 0
10 3 3 0 0 1
0 1 1 0 0 0

↑

LP Myth 15. The affine scaling algorithm converges to an optimum extreme point.

Counterexample. Mascarenhas[53] provides the following:

min x1 : x1, x2 ≥ 0
αx1 + βx2 − x3 ≥ 0
βx1 + αx2 − x3 ≥ 0
−x1 − x2 + x3 ≥ −1,

where α = 0.39574487 and β = 0.91836049. The optimal solution is at the extreme point
x∗ = (0, 0,−1). The essence of the counterexample is Mascarenhas’ proof that there exists
a half-line such that starting there and using a step size of 0.999, causes all even iterates
to be in the half-line, and they converge to zero.

LP Myth 16. At optimality, π∗b = cx∗ — that is, the inner product of the optimal dual
variables on the constraints and the right-hand side values equals the optimal primal objective
value.

While this is true for standard and canonical forms, it fails when primal bounds are handled
directly. Consider the primal-dual LPs:

Primal

min cx : 0 ≤ x ≤ U, Ax ≥ b.

Dual

max πb− µU : π, µ ≥ 0, πA− µ ≤ c.

At optimality, cx∗ = π∗b − µ∗U , so one must be careful to subtract µ∗U from π∗b to obtain
the correct equation.

Support for handling bounds directly, rather than including them in other constraints, is an
example of how optimization software may use different conventions than in the theory. Such
deviations from theory in the world of optimization software include reporting dual prices
and/or reduced costs as the negative of their theoretically-correct values. One must check
the manual or run a small test case to see how they are reported in any particular solver.
(ANALYZE[34] reports theoretically-correct values, changing solver-values as needed.)
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LP Myth 17. Once the simplex method reaches an optimal vertex, it terminates.

The fallacy is that the Basic Feasible Solution (BFS) reached must be both primal and dual
optimal for the tableau to be terminal.

Counterexample. Gerard Sierksma provided the following (converted to standard form):

max x1 + x2 : x, s ≥ 0
x1 + s1 = 1

+ x2 + s2 = 1
x1 + x2 − s3 = 2

The extreme point (1, 1) is optimal and corresponds to three BFSs:

basic level s2 s3
x1 1 −1 −1
x2 1 1 0
s1 0 1 1
−z 2 0 1

↑

basic level s1 s3
x1 1 1 0
x2 1 −1 −1
s2 0 1 1
−z 2 0 1

↑

basic level s1 s2
x1 1 1 0
x2 1 0 1
s3 0 1 1
−z 2 −1 −1

Terminal

Only the third of these is both primal and dual optimal; the other two are not terminal.
The reason is the myopic nature of rates, oblivious to the degeneracy:

Tableau 1
∆x1 = ∆s3
∆x2 = 0
∆s1 = −∆s3
∆z = ∆s3

Tableau 2
∆x1 = 0
∆x2 = ∆s3
∆s2 = −∆s3
∆z = ∆s3

Tableau 3
∆x1 = −∆s1
∆x2 = −∆s2
∆s3 = −∆s1 −∆s2
∆z = −∆s1 −∆s2

Tableau 1 sees a rate of change in the objective value as +1 per unit of increase in s3
(keeping s2 = 0). The linear equations show that the net rate of change in the objective
value (z) is +1, which is its reduced cost. Similarly, tableau 2 sees a rate of change in the
objective value as +1 per unit of increase in s3 (keeping s1 = 0). The linear equations show
that the net rate of change in the objective value (z) is +1, which is its reduced cost. The
third tableau has s3 in the basis, so it responds to changes in either of the first two slack
variables. Any increase in one slack value causes a decreases in its corresponding variable
while keeping the other primary variable at 1 — for example,

∆s1 > 0⇒∆x1 = −∆s1 < 0 and ∆x2 = 0.

(The value of s3 also decreases at the same rate, which does not affect the objective value.)
The net effect is that the objective value decreases at that same unit rate, as indicated by
the reduced cost. The same analysis applies to increasing s2.
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LP Myth 18. In the absence of degeneracy, the standard simplex method does not repeat a
basis exchange.

Saaty[68] presented this conjecture with some supporting intuition. In the absence of degener-
acy, this has a unique choice of departing variable for the exchange. However, Goldman and
Kleinman[32] found the following:

Counterexample. This is a special case of the family of counterexamples in [32]:

max 3x1 + 2x2 :
7x1 + 2x2 ≤ 7
3x1 + 2x2 ≤ 4
x1, x2 ≥ 0.

Adding slack variables s = (s1, s2), and starting at x = (0, 0), the standard simplex itera-
tions are:

Basic Basis
Iteration Vertex Variables Exchange

0 (0, 0) s1, s2 s1 ← x1

1 (1, 0) x1, s2 s2 ← x2

2 ( 3/4 , 7/8 ) x1, x2 x1 ← s1

3 (0, 2) s1, x2

LP Myth 19. The standard simplex method does not revisit a basic feasible solution (that is,
cycle) as it pivots to an optimum.

Hoffman[44] gave the first example of cycling in the standard simplex method, which has 11
variables and 3 equations.

Counterexample. The following is due to Beale[6], with only 7 variables and 3 equations.
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x1 x2 x3 x4 x5 x6 x7 RHS

( 1/4 ) −60 − 1/25 9 1 0
1/2 −90 − 1/50 3 1 0

1 1 1
− 3/4 150 − 1/50 6 • • • 0
↑

1 −240 − 4/25 36 4 0
(30) 3/50 −15 −2 1 0

1 1 1
• −30 − 7/50 33 3 • • 0

↑

1 ( 8/25 ) −84 −12 8 0
1 1/500 − 1/2 − 1/15 1/30 0

1 1 1
• • − 2/25 18 1 1 • 0

↑

25/8 1 − 525/2 − 75/2 28 0
− 1/160 1 ( 1/40 ) 1/120 − 1/60 0
− 25/8

525/2
75/2 −25 1 1

1/4 • • −3 −2 3 • 0
↑

− 125/2 10500 1 (50) −150 0
− 1/4 40 1 1/3 − 2/3 0
− 125/2 −10500 −50 150 1 1
− 1/2 120 • • −1 1 • 0

↑

− 5/4 210 1/50 1 −3 0
1/6 −30 − 1/150 1 ( 1/3 ) 0

1 1 1
− 7/4 330 1/50 • • −2 • 0

↑
Next tableau is same as first.

Hall and McKinnon[42] established the following form for a class of cycling examples with
the same dimensions as Beale’s example — four variables, three inequality constraints, one of
which is just for bounding:

max cx : x ≥ 0, A1x+A2y ≤ 0, x1 + x2 ≤ 1,
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where c = (a, b) such that a > 0 > b, and A1, A2 and are 2× 2 blocks such that Ai11 + Ai22 =
Ai21A

i
12 −Ai11A

i
22 = −1 for i = 1, 2. In particular, they provide the following:

Counterexample.

max 2.3x1 + 2.15x2 − 13.55x3 − 0.4x4 : x ≥ 0
0.4x1 + 0.2 x2 − 1.4 x3 − 0.2x4 ≤ 0
−7.8x1 − 1.4 x2 + 7.8 x3 + 0.4x4 ≤ 0

x1 + x2 ≤ 1.

The optimal solution is (0, 1, 0, 1).
Using the standard max reduced cost for entry, Hall and McKinnon use the largest pivot
value to select the variable to leave the basis (among those with minimum ratio). Starting
with the basis of surplus variables, {x5, x6, x7}, the example cycles after six iterations. An
important difference with Beale’s example is that Hall and McKinnon establish a family of
smallest examples, for which the above is one instance.

Hall and McKinnon also provide a library of test problems at http:\www.maths.ed.ac.uk/hall/
PublicLP/. The above example is called HAMCK26E. The library also includes examples of a
related phenomenon, called stalling, where the objective remains constant for a large number
of iterations.

Also see Gass and Vinjamuri[28] for more cycling examples.

LP Myth 20. A simplex method using steepest-edge column selection does not cycle.

Counterexample. Using the same construction approach as in LP Myth 19, Hall and Mc-
Kinnon[42] provide the following:

max x1 + 1.75x2 − 12.25x3 − 0.5x4 : x ≥ 0
0.4x1 + 0.2 x2 − 1.4 x3 − 0.2x4 ≤ 0
−7.8x1 − 1.4 x2 + 7.8 x3 + 0.4x4 ≤ 1

− 20 x2 + 156 x3 + 8 x4 ≤ 0.

Here are the tableaux that form the 6-cycle, where the last row in each tableau is the
reduced cost divided by the Euclidean norm of the tableau column vector. (This is the
initial rate of change in the objective value with respect to change in total distance. Further,
it is scale-free and accounts for the geometry of the basis in the sense that Tj = B−1Aj . See
Greenberg and Kalan[38] for how this measure can be computed without solving B Tj = Aj
explicitly.) The steepest-edge rule chooses the maximum of these to enter the basis. (The
departing variable remains chosen by largest pivot.)

x1 x2 x3 x4 x5 x6 x7 RHS

(0.4) 0.2 −1.4 −0.2 1 0
−7.8 −1.4 7.8 0.4 1 0

−20 156 8.0 1 1
1 1.75 −12.25 −0.5 • • • 0

0.128 0.09 −0.08 −0.06 0

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]

http:\www.maths.ed.ac.uk/hall/PublicLP/
http:\www.maths.ed.ac.uk/hall/PublicLP/


Page 18 February 20, 2010 LP Myths

1 0.5 −3.5 −0.5 2.5 0
(2.5) −19.5 −3.5 19.5 1 0
−20 156 8 0 1 1

• 1.25 −8.75 0 −2.5 • • 0
0.06 −0.06 0 −0.13 0

1 (0.4) 0.2 −1.4 −0.2 0
1 −7.8 −1.4 7.8 0.4 0

0 −20 156 8 1 1
• • 1 1.75 −12.25 −0.5 • 0

0.13 0.09 −0.08 −0.06 0

19.5 1 (2.5) −19.5 −3.5 0
2.5 1 0.5 −3.5 −0.5 0
0 −20 156 8 1 1
−2.5 • • 1.25 −8.75 0 • 0
−0.13 0.06 −0.06 0 0

−1.4 −0.2 1 (0.4) 0.2 0
7.8 0.4 1 −7.8 −1.4 0

156 8 0 −20 1 1
−12.25 −0.5 • • 1 1.75 • 0
−0.08 −0.06 0.13 0.09 0

−19.5 −3.5 19.5 1 (2.5) 0
−3.5 −0.5 2.5 1 0.5 0
156 8 0 −20 1 1
−8.75 0 −2.5 • • 1.25 • 0
−0.06 0 −0.13 0.06 0

The next pivot exchange is x4 ← x6, which returns to the initial tableau.

The odd iterates have two candidates to enter the basis (that is, two reduced costs are
positive). The one with greatest steepest-edge is opposite the one with greatest reduced
cost. Then, there is only one positive entry in the column (0.4), which dictates the variable
to leave the basis. The even iterates have only one candidate to enter the basis but two
candidates to leave. The greatest pivot element is 2.5 (vs. 0.5).

LP Myth 21. A simplex method does not cycle for an assignment problem.

“A simplex method” is taken to mean any sequence of (adjacent) basic feasible solutions that
enters a basic variable with negative reduced cost. This need not be the standard simplex
method, which selects one with the most negative reduced cost.
Counterexample. Gassner[29] provides a 4× 4 with costs:

c =


3 5 5 11
9 7 9 15
7 7 11 13
13 13 13 17

 .
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Begin with the diagonal assignment: x11 = x22 = x33 = x44 = 1. Let the additional 3 basic
(degenerate) variables be x12, x23, and x34. Here is the initial (abbreviated) tableau:

Nonbasic
Basic level x13 x14 x21 x24 x31 x32 x41 x42 x43
x11 1 0 0 1 0 1 0 1 0 0
x22 1 −1 −1 1 0 1 1 1 1 0
x33 1 0 −1 0 −1 1 1 1 1 1
x44 1 0 0 0 0 0 0 1 1 1
x12 0 1 1 −1 0 −1 0 −1 0 0

← x23 0 1 1 0 1 −1 −1 −1 −1 0
x34 0 0 1 0 1 0 0 −1 −1 −1

38 −2 2 4 4 0 −2 2 0 −2
↑

There are three candidates for entering the basis; select x13. Then, there are two candidates
to leave the basis; select x23. The pivot results in the following tableau:

Nonbasic
Basic level x14 x21 x23 x24 x31 x32 x41 x42 x43
x11 1 0 1 0 0 1 0 1 0 0
x22 1 0 1 1 1 0 0 0 0 0
x33 1 −1 0 0 −1 1 1 1 1 1
x44 1 0 0 0 0 0 0 1 1 1

← x12 0 0 −1 −1 −1 0 1 0 1 0
x13 0 1 0 1 1 −1 −1 −1 −1 0
x34 0 1 0 0 1 0 0 −1 −1 −1

38 4 4 2 6 −2 −4 0 −2 −2
↑

The next entering variable is x42, which has reduced cost = −2 (not the most negative).
In each of the subsequent tableaux, Gassner selects an entrant with reduced cost = −2,
although some have a reduced cost = −4, which would be selected by the standard simplex
method.

Nonbasic
Basic level x12 x14 x21 x23 x24 x31 x32 x41 x43
x11 1 0 0 1 0 0 1 0 1 0
x22 1 0 0 1 1 1 0 0 0 0
x33 1 −1 −1 1 1 0 1 0 1 1
x44 1 −1 0 1 1 1 0 −1 1 1
x42 0 1 0 −1 −1 −1 0 1 0 0
x13 0 1 1 −1 0 0 −1 0 −1 0

← x34 0 1 1 −1 −1 0 0 1 −1 −1
38 2 4 2 0 4 −2 −2 0 −2

↑
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Nonbasic
Basic level x12 x14 x21 x23 x24 x31 x34 x41 x43
x11 1 0 0 1 0 0 1 0 1 0
x22 1 0 0 1 1 1 0 0 0 0
x33 1 −1 −1 1 1 0 1 0 1 1
x44 1 0 1 0 0 1 0 1 0 0

← x42 0 0 −1 0 0 −1 0 −1 1 1
x13 0 1 1 −1 0 0 −1 0 −1 0
x32 0 1 1 −1 −1 0 0 1 −1 −1

38 4 6 0 −2 4 −2 2 −2 −4
↑

Nonbasic
Basic level x12 x14 x21 x23 x24 x31 x34 x42 x43
x11 1 0 1 1 0 1 1 1 −1 −1
x22 1 0 0 1 1 1 0 0 0 0
x33 1 −1 0 1 1 1 1 1 −1 0
x44 1 0 1 0 0 1 0 1 0 0
x41 0 0 −1 0 0 −1 0 −1 1 1

← x13 0 1 0 −1 0 −1 −1 −1 1 1
x32 0 1 0 −1 −1 −1 0 0 1 0

38 4 4 0 −2 2 −2 0 2 −2
↑

Nonbasic
Basic level x12 x13 x14 x21 x23 x24 x31 x34 x42
x11 1 1 1 1 0 0 0 0 0 0
x22 1 0 0 0 1 1 1 0 0 0
x33 1 −1 0 0 1 1 1 1 1 −1
x44 1 0 0 1 0 0 1 0 1 0

← x41 0 −1 −1 −1 1 0 0 1 0 0
x43 0 1 1 0 −1 0 −1 −1 −1 1
x32 0 1 0 0 −1 −1 −1 0 0 1

38 6 2 4 −2 −2 0 −4 −2 4
↑

Standard
simplex
enters x31

Nonbasic
Basic level x12 x13 x14 x23 x24 x31 x34 x41 x42
x11 1 1 1 1 0 0 0 0 0 0
x22 1 1 1 1 1 1 −1 0 −1 0
x33 1 0 1 1 1 1 0 1 −1 −1
x44 1 0 0 1 0 1 0 1 0 0
x21 0 −1 −1 −1 0 0 1 0 1 0
x43 0 0 0 −1 0 −1 0 −1 1 1

← x32 0 0 −1 −1 −1 −1 1 0 1 1
38 4 0 2 −2 0 −2 −2 2 4

↑
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Nonbasic
Basic level x12 x13 x14 x23 x24 x32 x34 x41 x42
x11 1 1 1 1 0 0 0 0 0 0
x22 1 1 0 0 0 0 1 0 0 1
x33 1 0 1 1 1 1 0 1 −1 −1
x44 1 0 0 1 0 1 0 1 0 0
x21 0 −1 0 0 1 1 −1 0 0 −1
x43 0 0 0 −1 0 −1 0 −1 1 1

← x31 0 0 −1 −1 −1 −1 1 0 1 1
38 4 −2 0 −4 −2 2 −2 4 6

↑

Nonbasic
Basic level x12 x13 x14 x21 x23 x32 x34 x41 x42
x11 1 1 1 1 0 0 0 0 0 0
x22 1 1 0 0 0 0 1 0 0 1
x33 1 1 1 1 −1 0 1 1 −1 0
x44 1 1 0 1 −1 −1 1 1 0 1
x24 0 −1 0 0 1 1 −1 0 0 −1

← x43 0 −1 0 −1 1 1 −1 −1 1 0
x31 0 −1 −1 −1 1 0 0 0 1 0

38 2 −2 0 2 −2 0 −2 4 4
↑

Nonbasic
Basic level x12 x13 x14 x21 x32 x34 x41 x42 x43
x11 1 1 1 1 0 0 0 0 0 0
x22 1 1 0 0 0 1 0 0 1 0
x33 1 1 1 1 −1 1 1 −1 0 0
x44 1 0 0 0 0 0 0 1 1 1

← x24 0 0 0 1 0 0 1 −1 −1 −1
x23 0 −1 0 −1 1 −1 −1 1 0 1
x31 0 −1 −1 −1 1 0 0 1 0 0

38 0 −2 −2 4 −2 −4 6 4 2
↑

Nonbasic
Basic level x12 x13 x21 x24 x32 x34 x41 x42 x43
x11 1 1 1 0 −1 0 −1 1 1 1
x22 1 1 0 0 0 1 0 0 1 0
x33 1 1 1 −1 −1 1 0 0 1 1
x44 1 0 0 0 0 0 0 1 1 1
x14 0 0 0 0 1 0 1 −1 −1 −1
x23 0 −1 0 1 1 −1 0 0 −1 0

← x31 0 −1 −1 1 1 0 1 0 −1 −1
38 0 −2 4 2 −2 −2 4 2 0

↑
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Nonbasic
Basic level x12 x13 x21 x24 x31 x32 x41 x42 x43
x11 1 0 0 1 0 1 0 1 0 0
x22 1 1 0 0 0 0 1 0 1 0
x33 1 1 1 −1 −1 0 1 0 1 1
x44 1 0 0 0 0 0 0 1 1 1

← x14 0 1 1 −1 0 −1 0 −1 0 0
x23 0 −1 0 1 1 0 −1 0 −1 0
x34 0 −1 −1 1 1 1 0 0 −1 −1

38 −2 −4 6 4 2 −2 4 0 −2
↑

The next pivot brings us back to the initial tableau, thus completing the cycle. (Also see
Gass[27, Chap. 10].)

Gassner proved that a simplex method cannot cycle for n < 4, so the above is an example of
a smallest assignment problem for which a simplex method cycles.

Opportunity Knocks
To my knowledge, there is no example of an assignment problem that cycles with the standard
simplex method. You may want to construct one or prove that no such counterexample exists.

LP Myth 22. When applying the simplex method to minimum-cost flows on a directed,
generalized network, the strongly convergent pivot rule out-performs the lexicographic rule for
selecting a departing variable from the basis.

The strongly convergent pivot rule was introduced by Elam, Glover, and Klingman[23] for the
LP model:

min cx : Ax = b, 0 ≤ x ≤ U,

where A is the node-arc incidence matrix (with weights), and x is the arc flow. Orlin[58] proves
it is equivalent to the lexicographic rule (though not at all obvious). He also cites related
works.

LP Myth 23. Suppose LP is solved and πi is the dual price associated with the i th constraint.
Then, the same solution is obtained when removing the constraint and subtracting πiAi•x from
the objective.

The reason this incorrect is because other solutions might exist to the revised LP. This error
has caused some to say that a tax is equivalent to a prohibition in the sense that the dual price
can be used as a tax in an LP that adds the tax to the objective and removes the prohibition
constraint.

Counterexample. min x + 2y : 0 ≤ x, y ≤ 10, x + y = 1. The solution is (x∗, y∗) = (1, 0)
with dual price, π = 1 for the last constraint. Then, the tax equivalent is:

min y : 0 ≤ x, y ≤ 10.
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The solutions are of the form (x, 0), where x is arbitrary in [0, 10]. Using a simplex method,
the solution obtained will be one of the extremes: x = 0 or x = 10, neither of which is the
original solution. In fact, the basic solution (10, 0) violates the original constraint.

A motivating application is the control of emissions of some pollutant. In an LP, there may
be a prohibition constraint:

max cx : x ≥ 0, Ax = b, dx ≤ δ,

where dj is the rate of emission caused by activity j, and δ is the limit. The tax model has
the form:

max cx− τdx : x ≥ 0, Ax = b,

where τ is the shadow price associated with the prohibition constraint (equal to an extreme
dual-variable value). Although the prohibition solution is optimal in this tax model, there may
be other optimal solutions that violate the limit.

Consider a numerical example for electricity generation by three sources: scrubbed coal, oil,
and uranium. The variables are fuel purchases and generation. The prohibition is a limit on
sulfur emissions (LSU) while satisfying electricity demand (DEL). The B-rows balance fuels.

Purchase Generate Dual
PCL POL PUR GSC GOL GUR Price

COST 18 15 20 0.9 0.6 0.4 = min
BCL 1 −1 ≥ 0 18
BOL 1 −1 ≥ 0 15
BUR 1 −1 ≥ 0 20
DEL 0.3 0.3 0.4 ≥ 10 67.5
LSU 0.2 0.6 ≤ 6 −8.25
bound 25 10
level 15 5 10 15 5 10

The solution to this LP generates all the electricity it can from uranium, which is 4 units, and
the remaining 6 units from the only combination of oil and scrubbed coal to satisfy both the
demand and the sulfur limit: GSC = 15 and GOL = 5. The issue is whether the sulfur-limit
constraint can be replaced by a tax on sulfur emissions.

The tax model adds 8.25 times the LSU coefficients to the objective:

COST + 8.25(0.2GSC + 0.6GOL).

The tax model and its two optimal solutions are:

Purchase Generate Dual
PCL POL PUR GSC GOL GUR Price

COST 18 15 20 2.55 5.55 0.4 = min
BCL 1 −1 ≥ 0 18
BOL 1 −1 ≥ 0 15
BUR 1 −1 ≥ 0 20
DEL 0.3 0.3 0.4 ≥ 10 67.5
bound 25 10
level1 20 0 10 20 0 10
level2 0 20 10 0 20 10
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The tax LP has alternative solutions with extremes that contain the original limit of 6 units
of sulfur emissions. At one extreme (level1), the company uses no oil; it generates the 6 units
of remaining electricity (after nuclear generation) by scrubbed coal. This complies with the
sulfur limit with slack: the amount of sulfur emitted is only 4 units. At the other extreme
(level2), the company uses no scrubbed coal. This violates the sulfur limit: the amount emitted
is 12 units. (This is the solution to the original model without the sulfur limit constraint; the
prohibition was specified to disallow this.)

Because the ‘equivalent’ tax model could result in a violation, the tax might be levied at slightly
more than the dual price of $8.25. In that case, however, the result is overly conservative,
resulting in much less sulfur emission than was deemed necessary for good health while raising
the cost above its minimum.

The problem is the bang-bang phenomenon with linear models: solutions respond to data
changes by an all-or-nothing principle. This reflects the fact that constant rates of substitution
cause trade-offs that are marginally beneficial to be globally beneficial; only a constraint can
stop the negotiation.

LP Myth 24. Let z(t) = min{cx : x ≥ 0, Ax = b+ th}, where h is a (fixed) m-vector. Then,
z is piece-wise linear, where the break-points occur wherever there must be a basis change.

The fallacy is the last sentence. The reason that this is not correct is that not every change
in basis implies the slope must change.
Counterexample. min x− y : x, y ≥ 0, x− y = t. Because z(t) = t for all t, there is only one

linearity interval (no breakpoints). However, for t positive, we must have x basic, and for
t negative, we must have y basic. At t = 0 there are two optimal bases, and the basis must
change as t varies in either of the two directions. Thus, although the basis must change
(to be feasible), the point at which this occurs (namely, at t = 0) is not a breakpoint of z.

Note: the interior approach gives the correct answer (that is, the slope changes when the
optimal partition changes). In the example, the optimal support has both x > 0 and y > 0,
no matter what the value of t. Thus, the optimal partition does not change.

LP Myth 25. Dijkstra’s shortest path algorithm is correct, even with negative arc-costs, as
long as there are no negative cycles.

The usual counterexample to the correctness of Dijkstra’s algorithm is with a negative cycle,
for which there is no shortest path. What if there is no cycle?
Counterexample. Yen[78] provides the following:

Dijkstra’s algorithm obtains the path (1, 3), whereas the shortest path
from 1 to 3 is (1, 2, 3).

LP Myth 26. Alternative, integer-valued optima in a shortest path problem correspond to
alternative shortest paths.
Counterexample. Consider the following network, where the LP is to ship one unit from

node 1 to node 4 along the least costly route. An optimal solution is the shortest path,
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1 → 2 → 4, with a cost of $3. There are two parameters, α, β, whose values can create
alternative optima. We assume α ≥ −3 to avoid a negative cycle, and we assume β ≥ 0.

If β = 0, another shortest path is 1 → 3 → 4.
The two shortest paths correspond to two basic
optima in the LP formulation, consistent with
the myth. However, when α = −3, we have a
zero-cost cycle: 1 → 2 → 4 → 1. Any solution
can be augmented by an arbitrary amount of
flow around the cycle without changing the total
cost.

The essence of the myth rings true — there are two simple paths corresponding to two basic
optima. However, the alternative optima with positive flow around the cycle spoils the result
being literally true. One must consider zero-cost cycles as a caveat in how the statement is
worded. The issue runs deeper in separating true alternative optima from frivolous ones. In
particular, the dual always has alternative optima of the form π′ = π+K, where π is any dual
solution and K > 0. This is frivolous because they do not convey any true alternatives in the
underlying economics.

To illustrate the difference between true
versus frivolous alternative dual optima,
consider a 3-tier supply, shown on the
right. The dual price at node 4 depends
on the demand parameter δ ≥ 0.

For δ = 0, the initial supply step can be basic, giving a basic dual price of π4 = 3 (and π1 = 0).
Another basic optimum has the initial supply step out of the basis at its upper bound of one
unit, and the second supply step is in the basis (at zero level), giving π1 = 1. The price at
node 4 then becomes π4 = 4. We have another interval of optimal prices at δ = 2. Optimal
dual prices are never unique, but when δ 6= 0, 2, 4, alternatives are frivolous in that we could
simply add any constant to all of them to obtain an alternative optimum. That notion of
“alternative” does not correspond to a real alternative; it is an artifact of the modeling.

To summarize, we have the following cases (for α ≥ −3, β ≥ 0, δ ≥ 0):

Primal Dual
unique α > −3, β > 0 never

frivolous α = −3, β > 0 δ 6= 0, 2, 4
true alternatives α > −3, β = 0 δ = 0, 2, 4

Opportunity Knocks
The distinction between true and frivolous alternative optima can be difficult to represent
precisely. There is practical benefit to doing so. Besides ruling out some solutions as frivolous,
one may want to know some generating set that brings an exponential number of alternatives
down to a linear number in terms of more basic dimensions. For example, suppose an m-
regional model has two alternatives within each region (but distributions among regions are
completely determined by specifying one of the 2m alternative optima). The total number of
alternative optima is 2m, but I suggest that there are circumstances where the distributions
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associated with combinations are not of much interest compared to knowing each of the 2m
alternatives. Syntactically, a modeling language could allow some notion of blocks or submodels
that make this practical. Also see IP Myth 16.

LP Myth 27. In a standard assignment problem, it is always optimal to assign the person-
to-job that has the least cost.

If this were true, we would have a greedy algorithm that recursively assigns the pair of least
cost among unassigned pairs. As illustrated with the following counterexample, the optimality
of an assignment depends upon relative costs. The one with least cost may eliminate an
alternative savings that is greater when considering second-least costs.

Counterexample.

1 2
10 15

This is a 2× 2 problem, and the issue is whether to assign Person 1 to Job 1
since that is the least cost.

If we assign Person 1 to Job 1, that cost is only 1, but we must then assign Person 2 to
Job 2. That yields a total cost of 16. The optimal assignment is to assign Person 1 to Job
2 and Person 2 to Job 1, for a total cost of 12.

LP Myth 28. Given an assignment problem with a non-optimal (but feasible) assignment,
its cost can be reduced by swapping some pair of assignments.

The following counterexample is adapted from Bertsekas[11].

Counterexample. There are 3 people to be assigned to 3 jobs. The current assignment is
shown below with the solid arcs, having total cost = 6.

Numbers next to arcs are costs.

Here are the possible pair-wise swaps:
Old New ∆cost

{1-1, 2-2} {1-2, 2-1} 0
{1-1, 3-3} {1-3, 3-1} 0
{2-2, 3-3} {2-3, 3-2} 0

Every pair of swaps leaves the cost unchanged, but an optimal assignment is {1-2, 2-3,
3-1}, having total cost = 3.
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LP Myth 29. A transportation problem with unique shipping costs has a uniquely optimal
shipment.
Counterexample. Rubin and Wagner[66] pointed this out after noticing that managers apply

this myth in practice. They provided the following:

Supplier 1 Supplier 2 Demand

Market 1 55
0 10

5
10 0 10

Market 2 65
5 5

15
10 10 15

Market 3 75
10 0

25
0 10 10

Supply 20 20

The upper number in each cell is the
unit shipping cost. For example, each
unit shipped from Supplier 1 to Market
1 is $55. The lower-left number is the
shipment in one optimal solution, and
the lower-right number is the shipment
in another optimal solution.

Note that the unit costs are all different, yet there are alternative optimal shipments. (The
minimum total cost is $1,275.)

LP Myth 30. The optimal dual price of a demand constraint equals the increase in the
minimum total cost if that demand is increased one unit.

This fails if the solution is not at a compatible basis[37] (in the presence of primal degeneracy).
Counterexample. The following is taken from Rubin and Wagner[66].

Supplier 1 Supplier 2 Demand Price

Market 1 55
10

10
0‡ 10 55†,55‡

Market 2 65
0†

15
10 10 65†,60‡

Market 3 80
0

25
10 10 75†,70‡

Supply 20 20 †Basis 1
Price 0, 0 50, 45 ‡Basis 2

The cell values are unit costs
and the (unique) optimal
shipment levels. Two (basic)
dual prices are shown.

If Market 2 demand increases, the first basis is compatible, and the change in the minimum
total cost is indeed $65. This can be achieved by sending one unit from Supplier 1 (which
has excess). The basis is compatible with this change because the shipment level, x12, can
increase from its degenerate basic value, 0. On the other hand, if the solver obtains Basis
2, the $60 dual price understates the increase in minimum total cost.
However, if we want to know the rate of savings from decreasing the demand in Market 2,
we obtain the minimum optimal dual price (among the alternative optima) of the demand
constraint. It is given by Basis 2 by letting the basic shipment level, x21, increase by 1,
balanced by decreasing x11 and x22 to 9.
The importance of using the wrong dual price for a marginal demand change is that the
computed change in the minimum total cost may not be correct. One must have the
maximum dual price to compute the effect of a demand increase, and one must have the
minimum dual price to compute the effect of a demand decrease. (More details are in [35].)
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For non-network LPs the myth can fail by having the correct slope (that is, ∂f∗(b)/∂bi = πi),
but the slope changes at ∆bi < 1, so the effect of a full unit change cannot be measured
precisely with the shadow price.

LP Myth 31. An increase in a demand requirement (with concomitant increase in supply)
increases the minimum total cost.

This is called the “more-for-less paradox.” The following transportation problem is from
Charnes and Klingman[21] (also see [74]).

Counterexample. There are 3 suppliers, with supplies shown in the last column, and 4
destinations, with demands shown in the last row. The cell values are optimal flows (blank
is zero) and the boxed cell values in the NW corner are costs. The modified problem is to
increase demand 1 and supply 2 by 9 units. The new optimal flow is shown on the right,
and the total cost has decreased from $152 to $143, despite the increase in total flow, from
55 to 64.

1
11

6 3
7

5
2 20

7 3 1
10

6 10

9 4
13

5 4
12 25

11 13 17 14 55

1
20

6 3 5 20

7 3
2

1
17

6 19

9 4
11

5 4
14 25

20 13 17 14 64

Original Problem Modified Problem
Min Cost = $152 Min Cost = $143

The underlying economics is that the greater flow can take advantage of low-cost activities.
In the transportation example, shipments from supplier 1 to destination 1 have the lowest
cost, but the original demand is not enough to ship all of the availability supply; supplier
1 must ship to other destinations. In the revised problem, supplier 1 can ship all of its
units to destination 1, and the other destinations can meet their requirements from other
suppliers less expensively.

Dĭneko, B. Klinz, and G. J. Woeginger[22] provide the following 3× 3 transportation problem:
supply: s = (0, 1, 1), demand: d = (1, 1, 0), and cost: cij = 2|i−j|. The minimum total cost is
4. Increasing the first supply and last demand to s′ = d′ = (1, 1, 1), the minimum total cost
is only 3. They proceed to develop a key condition under which this paradox cannot occur:
there does not exist i, j, p, q such that cij + cpq < ciq. If this condition does not hold, the
more-for-less paradox may apply, depending on the data.

Glover[20, p. 37] gives another example:
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The supplies and demands are
required ranges, and the arc
numbers are unit flow costs.

The minimum feasible flow is 15 units, and the least costly way to send that minimum is
x13 = 6, x14 = 4, and x24 = 5, for a total cost of $151. However, we can ship x13 = 10 and
x24 = 9, for a total cost of $143. We thus ship more for less!

Michael Hennebry provided the
small example shown at the
right.

Another form of the more-for-less paradox also arises with modeling requirement constraints
as equations, rather than with inequalities. The problem need not be a network.

Counterexample. The following is a diet problem with 3 foods and 2 nutrient requirements,
given by Arsham[5, 2]:

min 40x1 + 100x2 + 150x3 :
x1 + 2x2 + 2x3 = 10

3x1 + x2 + 2x3 = 20
x1, x2, x3 ≥ 0.

The optimal diet is x = (6, 2, 0) with a minimum total cost of $440. If we increase the
second nutrient requirement to 30, the optimal diet becomes x = (10, 0, 0) with a minimum
total cost of $400.

The diet problem usually has the canonical form:

min cx : Ax ≥ b, x ≥ 0

(perhaps with bounds on the levels of foods, as L ≤ x ≤ U). To require Ax = b does not give
the flexibility of allowing over-satisfaction of nutrient requirements, even though it could be
quite healthy to do so. This principle carries over to other situations, where modeling with
equations is not the appropriate representation. (Also see Charnes, Duffuaa, and Ryan[18].)

Arsham[4] provides another vantage, with some focus on production problems. Ryan[67] ad-
dresses economies of scale and scope, using goal programming for multiple market structures.

Opportunity Knocks
Does the more-for-less paradox extend to generalized networks? What about nonlinear costs?
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LP Myth 32. The line-drawing step of the Hungarian method for the assignment problem
can be replaced by: cover as many zeroes as possible with each line.

There have been several variants of the Hungarian algorithm — see Kuhn[52]. The original
Hungarian method is to cover the zeroes with a minimum number of lines. This myth suggests
another criterion, which turns out not to guarantee an optimal solution.

Counterexample. Storøy and Sørevik[77] provide the following 5× 5 (* denotes non-zero):

The line-drawing rule starts by covering the three zeroes in row 5, followed by covering the
two zeroes in row 4. Thus, a total of five lines must be drawn to cover all zeroes. Since this
equals the number of rows (and columns), the Hungarian method’s next step is to create
an optimal solution from the covered zeroes. This is not possible.
The minimum number of lines is four, and the Hungarian method continues to subtract
the minimum uncovered element (adding it to those covered by two lines).

LP Myth 33. The Stepping Stone Method always produces an optimal distribution.

This clever, early algorithm by Charnes and Cooper[17] specifically requires equality constraints
(with total supply equal to total demand). It was extended to the general node-bounded problem
by Charnes and Klingman[20]:

min
∑
i,j cijxij : x ≥ 0

si ≤
∑
j xij ≤ si, ∀i

dj ≤
∑
i xij ≥ dj , ∀j,

where 0 ≤ s ≤ s (supply out-flow bounds) and 0 ≤ d ≤ d (demand in-flow bounds).

Charnes, Glover, and Klingman[19] illustrated that the Stepping Stone Method need not
terminate with an optimal solution if the constraints are the following special case of the
node-bounded problem:

min
∑
i,j cijxij : x ≥ 0,

∑
j xij ≥ ai,

∑
i xij ≥ bj .

Counterexample. Charnes, Glover, and Klingman gave a counterexample for each case:
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∑
i ai =

∑
j bj

1 6 3 5 20
7 3 1 6 10
8 3 4 3 25
11 13 17 14

∑
i ai <

∑
j bj

2 4 3
1 1 1
2 5 1
3 4

∑
i ai >

∑
j bj

1 1 2 5
6 5 1 6
2 7 1

Each table gives the data in the form:

c11 . . . c1n a1
...

...
...

cm1 . . . cmn am

b1 . . . bm

The solutions given by the Stepping Stone Method are the associated xij :∑
i,j cijxij = 127

11 0 9 0
0 2 8 0
0 11 0 14

∑
i,j cijxij = 13

2 1
0 3
1 0

∑
i,j cijxij = 27
2 3 0
0 4 2

Here are feasible solutions with lower costs:∑
i,j cijxij = 118

20 0 0 0
0 2 17 0
0 11 0 14

∑
i,j cijxij = 12

3 0
0 4
1 0

∑
i,j cijxij = 15
2 7 0
0 0 6

LP Myth 34. The standard free-float formula for an activity in an activity-on-arc network
equals the maximum leeway for scheduling the activity without affecting any the earliest start
time of any later activity.

The standard formula for the free float (FF ) activity (i, j) is:

FFij = ESj − ECi (LP.3)

where ES = earliest start time, EC = earliest completion time.

The statement is true in the absence of dummy arcs, but it can be an underestimate when all
successors of some activity in the activity-on-arc network are dummy arcs.

Counterexample. Zhao and Tseng[81] provide the following (numbers on arcs are activity
durations):
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incorrect correct
Activity (i, j) FFij FFij

B (0, 2) 1 2
D (0, 4) 0 2
F (1, 2) 0 1

The incorrect values are from (LP.3). For example, FF02 = ES2−(ES0 +5) = 6−(0+5) =
1. The maximum leeway, however, is 2. If we delay starting activity B by 2 time units,
that will delay reaching node 2 by 2 time units. But since all arcs out of node 2 are dummy
arcs, no activity is immediately affected. Instead, the float limit of 2 comes from tracing
the paths out of node 2. Path 2→ 7→ 8 gives a limit of 2 time units — that is, increasing
the start of activity B by t delays the start of activity N by t− 2 for t ≥ 2. Similarly, the
path 2 → 4 → 5 → 8 reveals that the start of activity L will be delayed by t− 9, and the
path 2 → 4 → 6 → 8 reveals that the start of activity M will be delayed by t − 10. The
binding limit is from the first path, which yields the correct float value of 2.

Similarly, applying (LP.3) to arc (0, 4), we have the incorrect value: FF04 = ES4− (ES0 +
7) = 7 − (0 + 7) = 0. The correct value is obtained by tracing the paths 4 → 5 → 8 and
4 → 6 → 8. The former path yields a float limit of 2 time units (since activity L earliest
start time = ES5 = 9); the latter yields a float limit of 3 time unit (since activity M
earliest start time = ES6 = 10). The least of these limits is 2, which is the correct float
value.
Zhao and Tseng developed this into an algorithm that follows dummy arcs from a rooted
tree to obtain the correct free float values.

LP Myth 35. The maximum flow of commodities through a network equals the capacity of a
minimum disconnecting set.

This is correct when there is only one commodity and for special cases of more than one. The
failure for general numbers of commodities on networks of arbitrary topology was recognized
in the 1950’s — see Zullo[83] and her bibliography through 1995. The following example is
from Ford and Fulkerson[25], and is further discussed by Bellmore, Greenberg, and Jarvis[8].

Counterexample. In the following network, all capacities are 3.
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The max-flow is to send 3/2 units along each path from its source to its sink, for a to-
tal of 9/2 units. Here are the (unique) paths for each commodity: s1→ y→ z→x→ t1;
s2→ z→x→ y→ t2; s3→x→ y→ z→ t3.
The minimum disconnecting is just to break the cycle, say with arc (x, y), and the supply
arc for the one remaining commodity, which is (s1, y), for a total of 6 units of capacity.
There is no 1-arc disconnecting set, so this is a minimum, which implies max-flow < min-
cut.

LP Myth 36. new A maximum dynamic-flow on a network defined by a static network with
stationary data is temporally-repetitive. next new B

The maximum dynamic-flow problem is to find the maximum total flow that reaches the
sink(s) within a specified number of time periods, N . The time-expanded network is defined
by the given, static network, G = [V,A], with specified sources, S = {s1, . . . , sm} ⊂ V ,
and destinations, D = {d1, . . . , dm} ⊂ V . The data are capacities, ca, and traversal time,
τa, for each a ∈ A. For each v ∈ V define N + 1 nodes, {v(t)}Nt=0. For each arc, a ∈ A,
with endpoints (u, v), define the arcs {a(t)}N−τat=0 with (time-independent) data (ca, τa) and
endpoints (u(t), v(t+ τa)).

A flow is defined over a set of simple paths, each being from a source to a sink. Let the j th
path be Pj = (ai1 , . . . , aiLj ), where the tail of ai1 is in S and the head of aiLj is in D. The
path’s total travel time is

σj =
Lj∑
k=1

τaik .

Let fj(t) be the flow along path j, starting at time t (restricted to j such that σj ≤ N), and
let {Pj}

Np
j=1 be the set of paths in G. To satisfy capacity constraints, we must sum flow across

each arc at each time period. Let βaj be the time that flow reaches arc a ∈ Pj along path j,
starting at time 0. Then, βaj + t is the time it reaches a for flow fj(t).

For example, the network on the right has one commodity.
Dropping the commodity subscripts, there are three paths:

P1 = (s→ x→ d), σ1 = 2;
P2 = (s→ y → d), σ2 = 4;
P3 = (s→ x→ y → d), σ3 = 5. Arc values (c, τ) equal the capac-

ity and traversal time.

The time-expanded network for N = 7 has 13 paths:

P1(t) = (s(t)→ x(t+ 1)→ d(t+ 2)), for t=0,. . . ,5
P2(t) = (s(t)→ y(t+ 2)→ d(t+ 4)), for t=0,. . . ,3
P3(t) = (s(t)→ x(t+ 1)→ y(t+ 3)→ d(t+ 5)), for t=0,. . . ,2
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Expansion of P1 Expansion of P2

Expansion of P3

The arc-chain formulation of the multi-commodity maximum dynamic-flow problem is thus:

max
Np∑
j=1

N−σj∑
t=0

fj(t) : x ≥ 0,

∑
j: a∈Pj

fj(t− βaj) ≤ ca, t = ta, . . . , ta, a ∈ A,

where the time range is ta = maxj βaj , ta = N + minj{βaj − σj}.

Let f∗ be a maximum (static) flow in G. A solution is temporally repetitive if fj(t) = f∗j for
t = 0, 1, . . . , N − σj and fj(t) = 0 otherwise. The myth’s statement asserts that there is a
maximum dynamic-flow solution that is temporally repetitive. Ford and Fulkerson[25] proved
that the myth’s statement is true for one commodity, but Bellmore and Vemuganti[9] provide
the following

Counterexample. Consider three commodities (m = 3) and N = 20.

Path (Pj) σj
s1 → x→ y → z → d1 4
s2 → z → x→ y → d2 9
s3 → y → z → x→ d3 8

There are 42 paths in the dynamic network:

P1(t) = s1(t)→ x(t+ 1)→ y(t+ 2)→ z(t+ 3)→ d1(t+ 4), for t = 0, . . . , 16
P2(t) = s2(t)→ z(t+ 3)→ x(t+ 4)→ y(t+ 5)→ d2(t+ 9), for t = 0, . . . , 11
P3(t) = s3(t)→ y(t+ 2)→ z(t+ 3)→ x(t+ 4)→ d3(t+ 8), for t = 0, . . . , 12
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The path-arc arrival times, β (shown on right), deter-
mine the potentially binding capacity constraints from
the inner arcs:

(x, y) : f1(t− 1) + f2(t− 4) ≤ 3 for t = 4, . . . , 15
(y, z) : f1(t− 2) + f3(t− 2) ≤ 3 for t = 2, . . . , 14
(z, x) : f2(t− 3) + f3(t− 3) ≤ 3 for t = 3, . . . , 14

arc
j (x, y) (y, z) (z, x)
1 1 2 na
2 4 na 3
3 na 2 3

The maximum dynamic-flow solution is:

path
t 1 2 3
0 2 2 2
1 1 1 1
2 2 2 2
3 1 1 1
4 2 2 2
5 1 1 1

path
t 1 2 3
6 2 1 2
7 2 1 1
8 2 2 1
9 1 2 1
10 1 2 2
11 1 1 2

path
t 1 2 3

12 2 0 2
13 2 0 0
14 2 0 0
15 2 0 0
16 2 0 0
≥17 0 0 0
total 28 18 20 66

The total flow is 66. The maximum temporally-repeated flow is:

f1(t) = 2 for t = 0, . . . , 16
f2(t) = 1 for t = 0, . . . , 11
f3(t) = 1 for t = 0, . . . , 12
fj(t) = 0 otherwise.

The value of this flow is 59. (Bellmore and Vemuganti give the maximum temporally-
repeated flow value as 63, but I cannot see it.)

LP Myth 37. Undirected arcs can be replaced by a pair of oppositely oriented arcs, and there
is no loss in generality in obtaining a max-flow or a min-cut.

This is true for a single-commodity network[25], but it generally fails for multi-commodity
networks. The following is given by Bellmore, Greenberg, and Jarvis[8].
Counterexample. In the following network, capacities are shown next to each edge.

In the undirected graph, the max-flow is only 3, sending 3/2 units of each commodity (the
min-cut is also 3). After the replacement of each edge with opposite arcs, the max-flow
becomes 4 units (also the min-cut value).

(Note: for a single commodity there is no advantage to sending flow across both arcs since
they would cancel out in computing the total flow.)

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]



Page 36 February 20, 2010 LP Myths

LP Myth 38. The maximum two-way flow of a commodity through a network equals its
min-cut.

In this variation of capacitated network flow, some links may be directed (arcs) and some may
be undirected (edges). The flow on edges may be in either direction. Two-way flow from node
s to node t, denoted s↔ t, means two paths, one from s to t, denoted s→ t, and one from t
to s, denoted t→ s. A two-way flow is a pair of paths, one in each direction, and the value of
the flow is the minimum of all capacities of the links in the paths. A two-way cut for (s, t) is
a set of links whose removal removes all paths in both directions, s→ t and t→ s.

Rothschild and Whinston[63] provide the following:

Counterexample. In the following network (taken from [63]), all capacities are one. We
have: two-way max-flow = 1 < two-way min-cut = 2.

s t

Counterexample. T.C. Hu sent me the following:

All capacities are 1, so the two-way max flow = 1,
and the two-way min cut = 2.

LP Background — Gomory-Hu Cut Trees
Consider an undirected graph with distinguished nodes s, t. Each edge e has a capacity, ce, so
there is a maximum flow from s to t, which equals the minimum cut that disconnects s from t.
The multi-terminal max-flow/min-cut problem is to find the max-flow/min-cut between each
s, t in the graph. This could be done by solving each of the ( n2 ) min-cut problems, but the
Gomory-Hu algorithm[33] does this with only n− 1 min-cut solutions.

Let Vst denote the max-flow/min-cut value between s and t. The Gomory-Hu algorithm
produces a cut-tree (sometimes called a Gomory-Hu tree), whose nodes are those of the
original graph and whose edges satisfy:

Vst = min
(i,j)∈Pst

Vij , (LP.4)

where Pst = edges in s-t path. The Gomory-Hu algorithm computes the n−1 cuts, from which
(LP.4) yields all of the ( n2 ) min-cut values in the original graph.

Example (taken from [33]):
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Capacitated network Gomory-Hu cut-tree

For example, V14 = 13 = min{18, 17, 13, 14}. The cut set is {(2, 3), (2, 5) (6, 3), (6, 4), (6, 5)},
with graph partition = {1, 2, 6 | 3, 4, 5}.

A cut-tree has two key properties:

1. Each max-flow/min-cut value in the original graph equals the minimum of the edge
values along the unique path connecting them in the cut-tree (that is, equation (LP.4)).

2. Removal of any edge from the cut-tree partitions the original graph into two sets of nodes
that comprise a cut set whose value equals the cut-tree edge value.

The first property gives the correct value of the min-cut, and hence the max-flow, and the
second property gives the actual cut-set for any pair of nodes.

LP Myth 39. Every connected network has a cut-tree.

The classical algorithm by Gomory and Hu[33] constructively establishes the existence of a cut-
tree for every connected, undirected graph. This was allegedly extended to directed graphs
for the symmetric case: the min-cut between two nodes is the lesser of the min-cut from one
to the other:

Vst = min{Vst, Vts}

Counterexample. Benczúr[10] provides the following:

Only 3 (of 7) cut-sets are min Flow trees do not encode min cut-set

Here are the min-cut values:

V =


0 1 1 1
∞ 0 3 3
∞ ∞ 0 ∞
∞ ∞ 4 0

⇒V =


0 1 1 1
1 0 3 3
1 3 0 4
1 3 4 0

 .
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Since the min-cut value of A is 1 and all other min-cut values are greater than 1, any
cut-tree must have A as a leaf. That leaves 9 trees to consider. Of these, 4 are shown
with the edge values equal to the associated min-cut values: V (C1 = (A |B,C,D)) = 1,
V (C2 = (A,B |C,D)) = 3, and V (C3 = (A,D |B,C)) = 4. Each tree violates the second
property to be a cut-tree: the cut-set obtained upon breaking an edge of minimum value
in the path between two nodes is not their min-cut.
Going from left-to-right, the first two trees’ violation is with (D,C). The cut-sets obtained
from the edge is (D |C,B,A) and (C |D,B,A), respectively, but the min cut-set between
D and C is C3. The third tree’s violation is with (B,C). The cut-set obtained from the
edge is (B |C,D,A), but the min cut-set between B and C is C2. The fourth tree’s violation
is with (B,D). The cut-set obtained from the edge is (B |D,C,A), but the min-cut is C2.
Now consider the other possible trees. Separating C and D makes their path value 3,
which is not the value of their min-cut. The four shown are the only ones satisfying the
first property of a cut-tree, showing the correct values of the min-cut using equation (LP.4).
Since min-cut=max-flow, these are called flow trees.

Rizzi[62] provides the following with additional insight.
Counterexample.

In any tree there must be a leaf. Any cut-tree
for this network must therefore have a star
cut, (v | {u 6= v}). Suppose z is a leaf and
its neighbor is y. The edge value of (z, y) is
the star cut value V (z |x, y, w, xa, . . . ) = 3.
If it were a cut-tree, this partition must be
the min-cut between z and y. This is not
the case, as the min-cut between z and y is
V (z, x | y, w, xa, . . . ) = 2.

The key property identified by Rizzi is the notion of a good pair : (s, t) such that the star
cut at t is a min-cut of (s, t), or there is no min-cut of (s, t) (that is, no path s → t or
t→ s). Rizzi’s network has no good pair, and that is why a cut-tree does not exist.

LP Myth 40. Removing an arc in a network cannot decrease users’ latency or cost.

This is Braess’ Paradox [14] applied to traffic flow.
Counterexample. The following is the classical example[15] — also see http://supernet.som.

umass.edu/facts/braess.html.

`(x) is the latency function of flow, x;
c(x) is the cost.
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The equilibrium flow is determined by each driver using the min-latency path. For n users,
such that n < a, this is s→ v → w → t. (The users are indifferent among the three paths if
n = a.) This results in each user experiencing 2n units of latency. If we remove arc (v, w),
the drivers evenly split the use of the two different paths: s → v → t and s → w → t.
Their latencies thus reduce to 1

2n+ a each.
Using the same graph, Steinberg and Zangwill[73] provide the rest of the counterexample,
using the cost functions shown. With arc (v, w), 6 users evenly split each of the three
paths from s to t, so that xsv = xwt = 4, while the other arc flows are 2. Thus, each user
pays $92, and the system cost is $552. Without arc (v, w), 6 users split evenly between
the two paths. Thus, each user pays $83, and the system cost is $498.

A great deal of literature has developed since Braess introduced his paradox in 1968. It has
become a cornerstone of traffic equilibrium, as reflected in modern books by Nagurney[54, 57, 55]
and Roughgarden[64]. Also see Nagurney[56] and Roughgarden[65] for focus on the Braess
paradox and its relatives.

LP Myth 41. Given strict improvement in the objective value, the standard simplex method
does not visit an exponential number of vertices of the feasible polyhedron.

The falsity of this was first demonstrated by Klee and Minty[51]. The so-called Klee-Minty
polytope causes the standard simplex method to visit every extreme point, which grows expo-
nentially with the number of variables.

Counterexample. The LP has n variables, n constraints, and 2n extreme points. The ele-
mentary simplex method, starting at x = 0, goes through each of the extreme points before
reaching the optimum solution at (0, 0, . . . , 0, 5n).

max 2n−1x1 + 2n−2x2 + . . . + 2xn−1 + xn:
x1 ≤ 5

4x1 + x2 ≤ 25
8x1 + 4x2 + x3 ≤ 125

...
...

2nx1 + 2n−1x2 + . . . + 4xn−1 + xn ≤ 5n

x ≥ 0.

Another interesting example of exponential growth is due to Blair[12].

Jeroslow[47] was the first to present the construction of a class of examples for the best-gain
basis entrance rule to visit an exponential number of vertices. (Also see Blair[12].)

LP Myth 42. The worst-case time complexity of the simplex method is exponential and hence
worse than the worst-case time complexity of the interior-point method.

There are several things wrong with this statement. The first thing to note is that there is
no “the simplex method” and there is no “the interior-point method.” We know that both
the standard simplex method and the best-gain rule have exponential time complexity (see
LP Myth 41). However, the Hirsch Conjecture[82] leaves open the prospect for some simplex
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method to be linear in the numbers of variables and constraints. Also, there are interior-point
methods that behave better than Karmarkar’s original[49] in practice, but have no proof of
polynomial complexity.

The second thing to note is the perturbation analysis by Spielman and Teng[72]. In fact, many
coefficients are subjected to “random” perturbation due to rounding in their computations from
other data.

Now suppose we are talking about the standard simplex method and one of the interior-point
methods with a proof of polynomial complexity in the length of the data. Then, the third thing
to consider is that the length of the data could be an exponential function of the number of
variables. One example of this is a Linear Programming Relaxation (LPR) whose coefficients
are computed from an aggregation algorithm[31]. The length of the coefficients (number of
digits) can be an exponential function of the numbers of variables and constraints.

Thus, one must be careful in how to compare the (theoretical) worst-case time complexities of
simplex versus interior methods.

LP Myth 43. The standard simplex method is polynomial time for min-cost network flow
problems.

Counterexample. Zadeh[79] provides the following. Consider a network, denoted Nn, with
2n + 2 nodes such that n nodes are sources, n are sinks, one node is a super-source, and
one is a super-sink; arcs are (s, t), (s1, t1), (si, s), (t, ti), {(si, tj) : j 6= i} for i = 1, . . . , n.
The 2n2 + 2 arc capacities are infinite, but supplies and demands are forced flow values for
each (si, s) and (t, ti) from the external supplies (S) and demands (D) for n > 1:

S1 = 1 D1 = 2
S2 = 3 D2 = 2
Si = Di = 2i−1 + 2i−3 for i = 3, . . . , n

The arc costs are c(s, t) = M , c(s1, t1) = 0, c(si, s) = c(t, ti) = c(si, tj) = 2i−1 − 1 for
j < i and c(si, tj) = 2i − 1 for j ≥ i for i = 1, . . . , n. The value of M is sufficiently large
to render the use of arc (s, t) prohibitive (that is, x(s, t) is its minimum feasible value in
every optimal solution).

Here are N2 and N3 — supplies are tailless arcs into si; demands are headless arcs out of
ti; and, arc numbers are costs.

N2 N3
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Let the initial feasible basis be the tree with arcs (s, t), {(si, s), (t, ti) : i = 1, . . . , n}. The
basic levels are the associated supplies and demands. The following shows the initial basis
for N3 and the new basis after one iteration. Arc numbers are flow×cost.

Initial basis for N3 Basis after one iteration
Total cost = 38 + 9M Total cost = 36 + 8M

Basis after two iterations Basis after three iterations
Total cost = 35 + 7M Total cost = 33 + 5M

Basis after four iterations Basis after five iterations
Total cost = 31 + 3M Total cost = 30 + 2M
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The optimal solution for N3, shown to the right,
has Total cost = 30 +M , which is reached in six
iterations. (One unit of flow must flow across (s, t)
to satisfy demand at t3).

The choice of arc (s1, t1) to enter the basis is because its reduced cost, −(M+1), yields the
greatest rate of cost decrease. Every arc of the form (si, tj) reduces a unit of flow across
(s, t), so the most negative reduced cost is the one with the least cost. Thus, c(s1, t1) = 0
is the one. Arc (s2, t1), for example, has reduced cost 1− (M + 1).

While each iteration selects the arc to enter the basis that has the greatest rate of decrease
in flow across (s, t), the actual reduction is limited. For N3, the reduction is either 1 or 2
each iteration. For n ≥ 3, the initial flow across (s, t) is∑n

i=1 Si =
∑n
i=1 Di = 4 +

∑n
i=3
(
2i−1 + 2i−3)

= 4 + 5
∑n−3
i=0 2i = 4 + 5(2n−2 − 1) = 5×2n−2 − 1

Since we do not have arc (sn, tn) and the total supply from s1, . . . , sn−1 is less than Dn,
the difference must go across (s, t). That is, the minimum value of x(s, t) is

Dn −
∑n−1
i=1 Si = 2n−1 + 2n−3 − 1− 3−

∑n−1
i=3

(
2i−1 + 2i−3)

= 2n−1 + 2n−3 − 4− 5(2n−3 − 1)
= 2n−1 + 2n−3 + 1− 5× 2n−3

= 2n−1 + 1− 4× 2n−3 = 1.

I believe Zadeh’s argument claims that the standard simplex method reduces the flow across
(s, t) by no more than K each iteration. Since the initial feasible bases has x(s, t) = O(2n),
the number of iterations for Nn to reach the optimal flow of x(s, t) = 1 is O(2n).

Opportunity Knocks
My interpretation of Zadeh’s argument could be wrong, and I am unable to present a
complete proof that the reduction of x(s, t) in one iteration is limited by some constant, K.
I have been unable to reach Zadeh to obtain clarification (and his approach is different).
It would be useful to have this completed (or some other counterexample).

Zadeh analyzes other network problems and algorithms using this type of construction. He
also provides more pathological examples in [80]. (See Orlin[59] for a polynomial-time simplex
algorithm for min-cost network flows.)

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]



LP Myths February 20, 2010 Page 43

LP Myth 44. The c-diameter of a non-empty polytope of dimension d with f facets cannot
exceed f − d.

Let P denote the polytope (that is, bounded polyhedron), and let V ∗(P, c) denote the set of
vertices that minimize a linear form, cx, on P . The c-diameter from a vertex v ∈ P for a
given linear form is defined as the maximum distance from v to V ∗(P, c). The distance is
defined to be the minimum number of edges in a path joining v to V ∗(P, c) along which cx is
non-increasing. (In terms of LP, the c-diameter is an upper bound on how many vertices the
simplex method visits before reaching an optimal vertex.) Denote the c-diameter from v by
∆(v, c), and the myth asserts ∆(v, c) ≤ f −d. This is known as the monotonic bounded Hirsch
conjecture.

Counterexample. Todd[75] provides the following:

P = {x ∈ �4
+ : Ax ≤ b}, where A =


7 4 1 0
4 7 0 1
43 53 2 5
53 43 5 2

 , b =


1
1
8
8

 .

This is a 4-dimensional polytope with 8 facets, so the myth asserts that the c-diameter
cannot exceed 4 for any linear form. Let c = (1, 1, 1, 1), so V ∗(P, c) = {(0, 0, 0, 0)T}. Todd
proves that all non-increasing paths from v = 1

19 (1, 1, 8, 8)T to 0 have a distance of 5.

See Klee and Kleinschmidt[50] for an extensive survey of the Hirsch conjecture and related
properties of polytopes. Also see Holt and Klee[45] for a counterexample to the strong d-step
conjecture.

LP Myth 45. Determining whether an LP has a degenerate basis has the same complexity
as solving the LP.

LP has a polynomial algorithm, but Chandrasekaran, Kabadi, and Murty[16] prove that the
degeneracy testing problem is NP-complete. It is easily seen that degeneracy testing is in NP,
so it remains to construct a polynomial reduction of an NP-complete problem to degeneracy
testing. They use the NP-complete subset sum problem[26, SP13]:

SS: Given a1, . . . , an, b ∈ �+, find x ∈ {0, 1}n : ax = b.

Consider an n×2 transportation problem with supplies s = a and demands d = (b,
∑n
i=1 ai−b).

Then, checking whether SS has a solution is equivalent to checking if the usual algebraic
representation of the transportation polytope is degenerate:∑

j

xij = si,
∑
i

xij = dj , x ≥ 0.

Chandrasekaran et al. note that the transportation problem is degenerate whenever there
are subsets with total supply equal to total demand — that is, there exist non-empty, proper
subsets I, J (∅ 6= I ⊂ {1, . . . ,m}, ∅ 6= J ⊂ {1, . . . , n}) such that

∑
i∈I si =

∑
j∈J dj .

My thanks to Katta Murty for providing clarification and the following additional examples
of NP-complete (or NP-hard) problems.
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1. Find a BFS with the fewest number of positive variables.
2. Find a maximum-cardinality subset of minimally linearly dependent vectors.
3. Find a minimum-cardinality subset of linearly dependent vectors containing a given

vector.
4. Find a singular principal submatrix of a square matrix.

LP Myth 46. In employing successive bound reduction in a presolve, we can fix a variable
when its bounds are within a small tolerance of each other.

The myth is that we can pick a tolerance, say τ > 0, such that if we infer L ≤ x ≤ U and
U − L ≤ τ , we can fix x to some value in the interval, such as the midpoint, 1

2 (L+ U). There
are a few things wrong with this, as reported by Greenberg[34].

Counterexample. Consider x ≥ 0 and
1
2x1 + x2 = 1
x1 + x2 = 2.

This has the unique solution, x = (2, 0), and it is this uniqueness that causes a problem
with greater implications.
In successive bound reduction, the most elementary tests evaluate rows to see if just one
row alone can tighten a bound on a variable. Initially, the bounds are the original ones:
L0 = L = (0, 0) and U0 = U = (∞,∞). The first iteration results in the inference that
x1 ≤ 2, from the first equation and the fact that x2 ≥ 0. It similarly produces an upper
bound, x2 ≤ 1, so U1 = (2, 1). Still in iteration 1, the second equation causes the inference,
x1 ≥ 1, because we already have x2 ≤ 1 when we get there. Thus, L1 = (1, 0).
At a general iteration, we will have inferred Lk1 ≤ x1 ≤ 2 and 0 ≤ x2 ≤ Uk2 , where Lk1 < 2
and Uk2 > 0. At the end of iteration k, the inferred bounds are:

2− ( 1
2 )k ≤ x1 ≤ 2 and 0 ≤ x2 ≤ ( 1

2 )k .

This converges to the unique solution, but it does not reach it finitely. If the iterations go
far enough, the bounds become within the tolerance τ > 0. At that point, suppose x is
fixed to the interval’s midpoint: x = 1

2 (Lk + Uk).
To see a consequence of this, suppose that the presolve tests feasibility with another tol-
erance, µ. Let the constraints be of the form Ax = b. The rule is: Declare infeasibility if,
for some equation, i,

ymax
i = max

Lk≤x≤Uk
Ai•x < bi − µ or

ymin
i = min

Lk≤x≤Uk
Ai•x > bi + µ.

In our example, when k = d− log2 τe, both variables are fixed:

x1 = 2− ( 1
2 )k+1

, x2 = ( 1
2 )k+1

.

Equation 2 passes the feasibility test, but equation 1 has

ymax
1 = ymin

1 = 1− ( 1
2 )k+2 + ( 1

2 )k+1 = 1 + ( 1
2 )k+2

.
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Thus, ymin
1 = 1 + ( 1

2 )k+2, so we declare infeasibility if ( 1
2 )k+2

> µ. Taking logs, this is
equivalent to −(k + 2) > log2 µ. Replacing k, we have that a false infeasibility is declared
if

−d− log2 τe − 2 > log2 µ.

For example, if τ = 2−20, we declare a false infeasibility if µ < 2−22.

This example highlights two things:

1. Tolerances are related. The tolerance to fix a variable should not be substantially less
than the infeasibility tolerance.

2. Fix a variable judiciously. When having inferred xj ∈ [Lj , Uj ], such that Uj − Lj is
within tolerance of fixing xj , do so in the following order of choice:

(1) If Lj is an original bound, fix xj = Lj ;
(2) If Uj is an original bound, fix xj = Uj ;
(3) If [Lj , Uj ] contains an integer, p, fix xj = p;
(4) If all of the above fail, fix xj = 1

2 (Lj + Uj).

LP Myth 47. A factored form of the basis contains less error for FTRAN after reinversion.

The Forward Transformation (FTRAN) algorithm solves the forward system, Bx = b, by
factoring B and updating it after each basis change. Consider the elementary product form:
B = E1E2 · · ·Ek, where each Ei is an elementary matrix.
Algorithm: Forward Transformation with PFI

Initialize. Set x0 = b.
for i = 1 : k do

Solve Eixi = xi−1

end for
Exit with xk the (computed) solution to Bx = b.

During the pivoting process, k increases and there are more factors than needed. Reinversion
is the process of restarting to obtain the minimum number of factors, which equals the number
of variables in the basis (except slacks). One reason to reinvert is to “cleanup” the errors that
accumulate, which affects the accuracy of solving BxB = b. (Another reason is to reduce the
FTRAN time.)

The essence of the counterexample is cancelation of errors in the first factors that does not
cancel in the reinverted factorization.

Counterexample. Consider the 2× 3 system:

a11x1 + a12x2 + a13x3 = b1
a21x1 + a22x2 + a23x3 = b2

Pivoting x1 on equation 1, then x2 on equation 2 into the basis, then replacing x1 with x3
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yields the following elementary factors:

E1 =
[
a11 0
a21 1

]
; E2 =

[
0 a12/a11
1 a22 − a21a12/a11

]

E3 =
[
a13/a11 − a22 − a12a)21/a11)((a23 − a13a)21/a11)/a12/a11 0(

a23 − a13a21/a11
)
/(a12/a11) 1

]
.

Collecting computed values and substituting c with a new index whenever there is a new
computation, we obtain:

E1 =
[
a11 0
a21 1

]
; E2 =

[
0 c1
1 c2

]
; E3 =

[
c3 0
c4 1

]
.

Then, executing FTRAN for b (to get basic levels):

x1 =
(

b1/a11

b2 − (b1/a11)a12

)
=
(
c5

c6

)

x2 =
(
x1

1 − (x1
2/c2)c1

x1
2/c2

)
=
(
c7

c8

)

x3 =
(

x2
1/c3

x2
2 − (x2

1/c3)c4

)
=
(
c9

c10

)

After reinversion, the elementary matrices have the form:

E1 =
[
a13 0
a23 1

]
; E2 =

[
0 c11
1 c12

]
.

Now the FTRAN algorithm yields computed levels:

B̂−1b =
(
c13
c14

)
.

Suppose β = B−1b, the true value of the levels. The issue is whether∣∣∣∣∣∣∣∣(β1 − c13
β2 − c14

)∣∣∣∣∣∣∣∣ = ||β − ζ ′|| <
∣∣∣∣∣∣∣∣(β1 − c9

β2 − c10

)∣∣∣∣∣∣∣∣ = ||β − ζ|| ,

where ζ the accumulated error before reinversion, and ζ ′ is the accumulated error after
reinversion.
It is possible that ζ = 0 while ζ ′ 6= 0 — that is, that we obtain an error-free solution
with the original factorization and reinversion introduces error. This can happen by error
cancelation. However, even if ||ζ ′|| < ||ζ||, the computed levels could have less error, at
least for some particular b. For example, let β = (100, 100)T, ζ = (2, 2)T, and ζ ′ = (1,−1)T.
Then, ||ζ|| > ||ζ ′||, yet ||β − ζ|| u 138.6 < 141.4 u ||β − ζ ′|| .
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Integer Programming and Combinatorial Optimization
The general form of an Integer Program (IP) is the optimization (min or max) of a function
over a domain such that the variables are required to have integer values. An Integer Linear
Program (ILP) has the form of LP with x ∈ �n. If only some of the variables must be integer,
it is called a Mixed-Integer Program (MIP). If it has the form of LP, but with xj ∈ � for
j ∈ J 6= ∅, it is a Mixed-Integer Linear Program (MILP). The Linear Programming Relaxation
(LPR) of a MILP is the Linear Programming Relaxation of xj ∈ �, allowing non-integer
solutions for all variables.

We include combinatorial optimization problems, even those that are not usually modeled with
IP.
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IP Myth 1. The integer solution is a rounding of its LPR solution.

It is possible that every MILP solution could be far from the relaxed solution. In fact, it is
possible that no rounding is feasible.

Counterexample. max 21x1 + 11x2 : x ≥ 0, 7x1 + 4x2 ≤ 13.

The relaxed solution is at
( 13

7 , 0
)
, and the optimal

integer solution is at (0, 3).

Glover and Sommer[23] provide more meaningful examples, including a conditional transporta-
tion problem. Additional examples and discussion are in Glover[20] and Glover, Klingman and
Phillips[22].

IP Myth 2. If a basic solution of the LPR of a MILP is not integer-valued, no rounding is
possible.

This apparent paradox was noted by Glover and Sommer[23] with the following “proof:”

The only fractional variables, which could be rounded, are basic, but the basic
equations, BxB = b, have a unique solution. Hence, no rounding is possible!

The flaw is the assumption that all non-basic variables must remain fixed at zero (or an upper
bound). In particular, slack variables may change to offset the rounding.

IP Myth 3. The LPR solves its associated ILP if, and only if, it has an optimal basic solution
that is integer-valued.

The sufficiency is always true, but the necessity of an integer-valued optimum that is basic
applies to binary programs (whose LPR is in standard form) and may not hold otherwise.
The following counterexample has an optimality region with non-integer extreme points but
an optimal integer point in its interior.

Counterexample. max 0x : 0 ≤ x ≤ b e, x ∈ �, where b 6∈ � and e is a vector of ones.
Dropping the integer requirement, the LP solution is any feasible point. For b > 1, e is
feasible and hence optimal for the LP. Therefore, it is optimal for the ILP, but it is not a
basic optimum for the LPR.

IP Myth 4. The number of extreme points of the integer hull is bounded by some multiple of
those of the LPR, where the multiple depends upon the number of variables and constraints.

Rubin[53] provides the following counterexample that shows the integer hull can have any
number of extreme points with only one constraint in �2

+. (Also see Jeroslow[34].)
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Counterexample. Define a polytope in 2 variables and 1 constraint plus non-negativity:
P = {x ∈ �2

+ : a1x1 + a2x2 ≤ b}, where a, b > 0. This has three extreme points. We can
choose a, b such that its integer hull, convh(P ∩�2), has N extreme points for any N ≥ 3.
The following figures show two such polytopes:

(a) N = 4 (b) N = 5

The following table shows more, and you may note a pattern that Rubin discovered.

N a1 a2 b
4 1 2 3
5 3 5 24
6 8 13 168
7 21 34 1,155
8 55 89 7,920
9 144 233 54,288
10 377 610 372,099

Let Fk be the k th Fibbonacci number, and P = {x ∈ �2
+ : F2kx1 +F2k+1x2 ≤ F 2

2k+1− 1}.
Then, convh(P ∩ �2) has k + 3 extreme points.
Rubin gives other ways to generate the polytope for one constraint in �2

+ such that it has
any number of extreme points.

The same myth and counterexample applies if “facets” replaces “extreme points.”

IP Myth 5. The number of extreme points of the integer hull is at least as great as the number
of extreme points of the LPR polyhedron.

Counterexample.

The LPR polyhedron can have regions
with no integer points, as illustrated to
the right. The integer hull has 3 extreme
points, whereas the LPR polyhedron has
4 (and could have any arbitrary number).

3x1 + x2 ≤ 3
x1 + 3x2 ≤ 3

x ≥ 0

The same myth and counterexample applies if “facets” replaces “extreme points.”
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IP Myth 6. Every integral vector of an n-dimensional integral polyhedral pointed cone C can
be expressed as a non-negative integral combination of at most n elements of the Hilbert basis
of C.

It it were true, this would be an extension of Carathéodory’s theorem. Let z1, . . . , zk ∈ �n be
generators of

C = {z : z =
∑k
i=1 λiz

i for some λ ∈ �k+}.

Counterexample. Bruns et al.[8] provide the following:

z1 = (0, 1, 0, 0, 0, 0), z6 = (1, 0, 2, 1, 1, 2),
z2 = (0, 0, 1, 0, 0, 0), z7 = (1, 2, 0, 2, 1, 1),
z3 = (0, 0, 0, 1, 0, 0), z8 = (1, 1, 2, 0, 2, 1),
z4 = (0, 0, 0, 0, 1, 0), z9 = (1, 1, 1, 2, 0, 2),
z5 = (0, 0, 0, 0, 0, 1), z10 = (1, 2, 1, 1, 2, 0).

The generators form a Hilbert basis for C, and the myth asserts that every integral vector
in C is a conical combination of only 6 of the 10 generators. Consider

g = (9, 13, 13, 13, 13, 13) = z1 + 3z2 + 5z4 + 2z5 + z8 + 5z9 + 3z10.

A minimum number of generators can be obtained by the ILP:

min
∑10
i=1 ui :

∑10
i=1 λiz

i = g,

ui ∈ {0, 1}, 0 ≤ λi ≤ 13ui, λi ∈ Z for i = 1, . . . , 10.

Bruns et al. solved this and found that seven generators are needed. They show how to
generate more counterexamples, giving insight into why more than six are necessary.

Bruns et al. also prove that for n ≥ 6 there exists some C ⊆ �n+ for which at least
⌊ 7

6n
⌋

vectors are needed to span its integral vectors.

IP Myth 7. new Every continuous facet for the infinite group problem is piecewise linear.
next new B

Let H denote the set of Haar functions:

H =
{
f : [0, 1]→ � :

∣∣{x : f(x) > 0}
∣∣ <∞}} .

Because they have a finite number of non-zero values, Haar functions are summable;
∑
r∈[0,1] f(r)

restricts the summation to the support set of f . Let

F = {f ∈ H : f(r) ∈ �+,∀r ∈ [0, 1]}.

The infinite group problem is defined as finding f ∈ F such that∑
r

rf(r) = f0, (IP.5)
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where f0 ∈ [0, 1] and the summation is modulo 1. A function, w, is valid if w ≥ 0, w(0) = 0,
and every solution to (IP.5) satisfies ∑

r

w(r)f(r) ≥ 1. (IP.6)

Let W denote the class of valid functions, and let P (w) denote associated solutions to (IP.6).
A facet for (IP.5) is w ∈ W such that P (w′) ⊇ P (w)→w′ = w for all w′ ∈ W . (A facet is
continuous if it is a continuous function on [0, 1].)

This myth is a conjecture posed by Gomory and Johnson[25] and resolved by Basu, Conforti,
Cornuéjols, and Zambeli[4] with the following

Counterexample. Define the following piecewise-linear function on x ∈ [0, 1]:

ψ0 =
{

1
2x for x ∈ [0, 1

2 ]
1
2 (1− x) for x ∈ [ 1

2 , 1].

(Note: this is a special case of the general construction given by Basu et al.) Then,
construct {ψi}∞0 by defining ψi+1, given ψi, by replacing the line segment from (a, ψi(a))
to (b, ψi(b)) for [a, b] ⊆ [0, 1

2 ] by three segments:

(a, ψi(a))→
(
ab − εi, ψi( ab ) + 2 εi

)
→
(
ab + εi, ψi( ab )− 2 εi

)
→ (b, ψi(b)),

where ab = 1
2 (a+b) and εi = ( 1

2 )2(i+3) for i = 0, 1, . . . . The interval, [a, b], is a maximal in-
terval with positive slope. The following figure illustrates the first two steps of construction
(Figure 1 in [4] for α = 1

2 ).

Define the limit function:
Ψ(x) = lim

i→∞
ψi(x), ∀x.

Basu et al. first prove that Ψ is a facet, then show that it is continuous but not piecewise
linear, thus dispelling the myth. A key to showing the validity of ψi is that it is subadditive.
The key to showing Ψ is a facet is the
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Interval lemma. Let w : �→� be a function bounded on every bounded interval. Let
U = [u1, u2] and V = [v1, v2] for any u1 < u2 and v1 < v2. If w(u) +w(v) = w(u+ v)
for all u ∈ U, v ∈ V , there exists c ∈ � such that

w(u) = w(u1) + c(u− u1)
w(v) = w(v1) + c(v − v1)
w(u+ v) = w(u1 + v1) + c(u+ v − u1 − v1)

 ∀u ∈ U, v ∈ V.

A key to establishing that Ψ is continuous is that {ψi(x)} is a Cauchy sequence and thus
converges. In fact, {ψi} converges uniformly to Ψ, which implies Ψ is continuous.
To show that Ψ is not piecewise linear, define Si as the subset of [0, 1] for which ψi has
negative slope. Basu et al. prove that Si is the union of 2i open intervals. Define S =
∪∞i=0Si, which is the set of points for which Ψ has negative slope. Since S is open, by
showing S is dense in [0, 1], Basu et al. complete the argument by applying contradiction,
as follows. If Ψ is piecewise linear, there must exist δ > 0 for which Ψ is linear on (0, δ).
Since S is dense, it must contain a point in (0, δ). Because Ψ(0) = 0, we reach the
contradiction that Ψ(x) < 0 for x ∈ (0, δ).

IP Myth 8. Given a digraph and a subset of arcs that intersects each cut with k arcs, there
exists a k-partition that covers the set of cuts.
Counterexample. Schrijver[56] provides the following for k = 2.

The digraph on the right has three sources, s1, s2, s3 and
three sinks, t1, t2, t3. C = {a, b, c, d, e, f, x, y, z} intersects
each (directed) cut at least twice. However, if C = C1∪C2,
C1 and C2 must contain exactly one or two arcs incident
with a source or sink. Further, for either i = 1 or i = 2,
we must have x, y ∈ Ci and z 6∈ Ci. Without loss in
generality, assume C1 satisfies these conditions. Then, C1
does not intersect the cut indicated in the figure: arcs
going from right to left. (Note that e, f ∈ C2.)

IP Myth 9. new Every point [line] cover contains a minimum point [line] cover. next new B

This illustrates that a minimum cover is not the same as a minimal cover.
Counterexample. Capobianco and Molluzzo[1] provide the following. Let G be any star

with L > 1 leaves. The leaves comprise a point cover (which is minimal), but the only
minimum cover is the center (which is a singleton).

Consider the graph shown on the right. A minimal line cover is {a, b, c, d},
but it does not contain any minimum line cover, such as {a, e, f}.

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]



Page 56 February 20, 2010 IP Myths

Capobianco and Molluzzo provide more counterexamples for covering properties. All pertain
to the difference between minimum and minimal — equivalently, to the failure of greedy
algorithms.

IP Myth 10. new The chromatic number of a connected graph decreases if any vertex is
removed if, and only if, it decreases if any edge is removed. next new B

The chromatic number of graph G is denoted χ(G). A graph is χ-minimal if χ(G − e) <
χ(G)∀e; it is χ-critical if χ(G − v) < χ(G)∀v. The myth asserts χ-minimal ↔ χ-critical. It
is true that χ-minimal → χ-critical, but Harary[29] shows that the converse is not true.

Counterexample.
The graph on the right has χ(G) = 4. It is χ-critical because
χ(G− v) = 3∀v, but it is not χ-minimal because χ(G− e) = 4 for
the particular edge labelled e.

IP Myth 11. If there exists an optimal solution to an ILP in standard form, there exists
an optimal solution with at most φ(m) positive values, where φ is a function of m (does not
depend upon n).

This was suggested to me by H.P. Williams, who consulted with Les Trotter.

For LP, this is the classic result that any optimal solution can be reduced to a basic solution
that is optimal (so φ(m) = m). The reduction process in that proof uses Carathéodory’s
theorem, which is shown in IP Myth 6 not to extend to integer vectors.

Counterexample. Let p1, . . . , pn be n distinct primes, and define aj =
∏
i 6=j pi. Consider

the ILP:
max cx : x ∈ �n+,

∑n
j=1 ajxj =

∑n
j=1 aj .

The only feasible solution is x = 1, so the number of positive variables is n.

IP Myth 12. If some activities in an LP have a fixed charge, a valid MILP model is to
introduce a binary variable, z, for each such activity and include constraints of the form,
0 ≤ x ≤ Uz, where U is a given or derived upper bound on x. The fixed charge, K, enters the
objective with the linear term Kz.

The model is min{f(x) + Kz : x ∈ X, zj ∈ {0, 1} and 0 ≤ xj ≤ zjUj for j ∈ J}, where J is
the set of variables with fixed charge. The idea is that zj = 0 forces xj = 0, whereas zj = 1
presents no additional constraint on xj , and allows xj > 0, in which case it incurs the fixed
charge. The issue arises when K < 0, sometimes called a fixed benefit.

Counterexample. Let K = −1 in the following: min 5x − z : 0 ≤ x ≤ 10z. The optimum
sets z = 1, but x = 0, contrary to what is intended.
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This is an example of the MIP-Representable problem, introduced by Meyer[46] and advanced
by Jeroslow and Lowe[36]. For a fixed charge, the minimization renders z = 1 as an optimal
binary value if x > 0 is optimal. For a fixed benefit, however, the minimization could render
z = 1 with x = 0, thus not representing the problem correctly.

Ed Klotz points out another problem, using software with imperfect arithmetic. Suppose
there is no a priori upper bound, and you use a “big-M” for the constraint: 0 ≤ x ≤ Mz.
If M is chosen large enough that x ≤ M is redundant, the model is theoretically correct
(for K > 0). However, the integrality tolerance allows z = τ to be considered integer-valued
(cplex R© uses τ = 10−5). Suppose you set M = 109. Then, the solver can set x = 100
and z = 100/109 = 10−7 < τ , thus allowing x > 0 with a net fixed-charge of only K×10−7.
This suggests choosing the value of big-M with great care, taking the integrality tolerance into
consideration. Other simple resolutions include computing individual bounds for xj , perhaps
using problem information.

IP Myth 13. If an ILP has an unbounded LPR, the ILP is also unbounded.

The following counterexample is due to Byrd, Goldman and Heller[9], based on the work of
Meyer[45], who showed this cannot happen with rational data and a feasible ILP.

Counterexample. max x1 : x ≥ 0, x ∈ �4, x3 −
√

2 (x1 − x2) = 0, x2 + x4 = 1.
The constraint set for the LP relaxation contains the ray, {(t, 0, t

√
2, 1) : t ≥ 0}. Thus,

the LPR is unbounded. The integer solutions, however, must have x1 = x2 in {0,1} and
x3 = 0. Thus, the only feasible solutions to the ILP are (0,0,0,1) and (1,1,0,0).

Ed Klotz points out that the IP can be bounded even with rational data if you allow type 2
SOS declarations, as in cplex.

Counterexample. max x1 : x ≥ 0, x2 ≤ 1, x3 − 1.41421x1 + 1.41421x2 = 0,

SOS
S2:: x_1: 1 x_2: 2 x_3 : 3
End

In the LP relaxation, the ray (t, 0, 1.41421t) is feasible. However, the SOS requirement
allows only two consecutive variables in the SOS set to take on nonzero values, so it cuts
off this unbounded direction when enforced. As a result, the MIP has a bounded, optimal
solution, x = (1, 1, 0).

IP Myth 14. In a recourse model of a stochastic MILP, the duality gap tends to zero as the
number of scenarios tends to infinity.

This is true under special situations, and there is some intuition that it is true in general —
that is, a “law of large numbers.”

Counterexample. Carøe and Schultz[11] provide the following 2-stage recourse:

min 3x− 2
n

n∑
j=1

yj : 0 ≤ x ≤ 1, y ∈ {0, 1}n, x− 1
2yj ≥ bj , for j = 1, . . . , n,
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where n is the number of scenarios, and yj is the recourse variable if scenario j prevails.
The probability that scenario j prevails is 1

n , with associated objective coefficient of 2 and
requirement:

bj =
{ 1

64 if j is even;
15
64 if j is odd.

The duality gap equals the difference between the optimal integer value and its LPR, which
Carøe and Schultz prove is at least 5

32 , independent of n.
A feasible solution to the LPR is x = 1

2 + 1
64 and

yj =
{

1 if j is even;
1
2 if j is odd.

For convenience, henceforth assume n is even. The optimal LPR solution thus satisfies
z∗ ≤ 3

(
1
2 + 1

64
)
− 2

( 3
4
)
= 3

64 .
To bound the MILP solution from below, first consider y = 0. This implies x ≥ 15

64 , so
z0 ≥ 45

64 . Second, consider yj = 1 for some odd j. This implies x ≥ 1
2 + 15

64 , which yields
the bound z0 ≥ 3

(
1
2 + 15

64
)
− 2 = 13

64 . Finally, if yj = 0 for all odd j and yj = 1 for some
even j, x ≥ 1

2 + 1
64 . This implies z0 ≥ 3

2 + 3
64 − 1 = 35

64 . Putting these three cases together,
we conclude

z0 ≥ min
{

45
64 ,

13
64 ,

35
64

}
= 13

64 .

Hence, the duality gap satisfies:

z0 − z∗ ≥ 13
64 −

3
64 = 5

32 .

Also see Sen, Higle, and Birge[57].

IP Myth 15. If an ILP has an unbounded LPR, the ILP is feasible.

This was motivated by a question from Marbelly Davila.

A polyhedron is unbounded if it contains a feasible half-line — that is, {x0 + th : t ≥ 0} ⊆ P ,
where x0 ∈ P and h 6= 0.
Counterexample. Let P = {(x, y) : x ≥ 3

4 , y ≥ 1
2 , x − y = 1

4} =
{

( 3
4 ,

1
2 ) + t(1, 1) : t ≥ 0

}
.

This does not contain any integer point since

(x, y) = ( 3
4 + t, 1

2 + t)→x− y = 1
4 .

IP Myth 16. Alternative optima correspond to equally-good problem solutions.

The myth assumes that the problem solution space is the same as the model solution space.
Counterexample. Consider the classical model for the TSP with n cities:

min
∑
i,j cijxij : x ∈ {0, 1}n×n∑

i xij = 1, ∀j,
∑
j xij = 1, ∀i∑

(i,j)∈S xij ≤ |S| − 1, ∀S : ∅ 6= S ⊂ {1, . . . , n}.
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The meaning of xij = 1 is that the tour visits city j right after city i. (The last constraint
set is subtour elimination.)
Suppose c is symmetric. Then, if x∗ is optimal, an alternative optimum is obtained by
reversing the tour:

x′ij =
{

1 if x∗ji = 1
0 otherwise.

Thus, the model has alternative optima, but they do not correspond to different tours. For
example, if x∗ yields the tour (1, 2, . . . , n, 1), x′ yields the tour (1, n, n− 2, . . . , 2, 1).

A similar model is with xik = 1 if i is the k th city visited. If x∗ is optimal, an alternative
optimum is found by changing the home city:

x′ik =
{

1 if x∗i (k+1)modn = 1
0 otherwise.

The model has alternative optima, but they do not correspond to different tours. If x∗
yields the tour (1, 2, . . . , n, 1), x′ yields the tour (2, 3, . . . , n, 1, 2).

(Node numbers are the times visited.)

Many combinatorial optimization problems have the symmetry problem: graph
coloring (swap colors 1 and 2 in the model solution) and protein fold prediction
— in particular, over a lattice (perform rigid transformation, such as rotation).
This is addressed by what is called symmetry exclusion. The figure on the right
illustrates alternative model solutions (that is, coordinate assignments), where
the second assignment is simply a 90o rotation of the first. Biologists see these
as the same protein fold; changing their orientation in space does not change
the protein’s structure.

Opportunity Knocks
The distinction between true alternative optima and simply different representations of the
same problem solution can be difficult to represent precisely, especially within one framework.
There is practical benefit to doing so, such as eliminating portions of the search tree. Geometric
problems, like protein folding, are amenable to symmetry exclusion[3], but not all symmetries
may be eliminated a priori. Also see LP Myth 26.
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IP Myth 17. Suppose x∗(t) is an optimal solution to the parametric ILP:

min{cx : Ax ≥ b+ td, x ∈ �n+}, for t ≥ 0.

If t′ < t′′ and x∗(t′) = x∗(t′′), then x∗(t) is optimal for all t ∈ [t′, t′′].

Wang and Horng[62] provide the following:

Counterexample. min 3x1 + 2x2 : x ∈ �2
+,

2x2 ≤ 9, 25x1 + 10x2 ≥ 129 + 2t, 5x1 + 20x2 ≥ 82− 4t.

At t = 0 and t = 1, the optimal solution is x∗(0) = x∗(1) = (4, 4); however, x∗( 1
2 ) = (4, 3).

IP Myth 18. One can solve an ILP finitely by adding cuts of the form∑
j∈Nk xj ≥ 1

where Nk is the set of non-basic variables in the k th LP relaxation having a fractional basic
solution.

This is known as the Dantzig cut [12]. Gomory and Hoffman[24] showed that the Dantzig cuts
need not converge finitely to an optimal solution with the following:

Counterexample.
max z = 4x1 + 3x2 + 3x3 : x ∈ {0, 1}3, 3x1 + 4x2 + 4x3 ≤ 6.

The optimal integer solution is at x = (1, 0, 0), with z = 4. Let sj be the slack variable
for the upper bound, xj + sj = 1, and let s0 be the slack variable for the constraint,
3x1 + 4x2 + 4x3 + s0 = 6. The LPR solution is at x = (1, 3

4 , 0), with z = 6 1
4 and

s = (0, 0, 1
4 , 1).

The following table gives five iterations, introducing a slack variable, tk, when the k th cut
is constructed.

x1 x2 x3 s0 s1 s2 s3 t1 t2 t3 t4 t5 z cut
1 3

4 0 0 0 1/4 1 6 1/4 x3 + s0 + s1 − t1 = 1
6
7 0 6

7 0 1/7 1 1/7 0 6 x2 + s0 + t1 − t2 = 1
1 2

7
2
7

5
7 0 5

7
2
3 0 0 5 5

7 s1 + t1 + t2 − t3 = 1
1 0 1

2 1 0 1 1
2

1
2

1
2 0 5 1

2 x2 + s1 + t2 + t3 − t4 = 1
6

13
6

13
9

13 0 7
13

7
13

4
13

3
13

3
13 0 0 5 7

13 s0 + t3 + t4 − t5 = 1

The cuts keep going, never terminating finitely.

Bowman and Nemhauser[6] proved convergence of a modified Dantzig cut, which was improved
by Rubin and Graves[54].
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IP Myth 19. A valid cut for the set covering problem is
∑n
i=1 xi ≥

⌊
z0⌋ + 1, where x0 is a

fractional LPR solution with objective value z0.

Counterexample. Rao[51] provides the following:

min x1 + x2 + x3 + x4 : x ∈ {0, 1}4

x1 + x2 ≥ 1
x2 + x3 ≥ 1

x3 + x4 ≥ 1
x2 + x4 ≥ 1

An LPR solution is x0 = ( 1/2 , 1/2 , 1/2 , 1/2 ), and z0 = 2. The cut is x1 + x2 + x3 + x4 ≥ 3,
but an optimal solution is x∗ = (0, 1, 1, 0), with z∗ = 2.

IP Myth 20. The Rudimentary Primal Algorithm (RPA) converges to an optimal solution.

Ben-Israel and Charnes[5] introduced a variation of Gomory’s algorithm, called the Direct
Algorithm, but without a proof of finite convergence. Young[65] subsequently cited it as the
Rudimentary Primal Algorithm (RPA).

Counterexample. Mathis[44] provides the following:

max x1 − x2 + 2x3 : x ∈ �3
+

2x1 + 4x2 − x3 ≤ 20
−8x1 + x2 + 3x3 ≤ 10

2x1 − 9x2 + 8x3 ≤ 6

Initial Tableau
Column

Row 0 1 2 3
0 0 −1 1 −2
1 0 −1 0 0
2 0 0 −1 0
3 0 0 0 −1
4 20 2 4 −1
5 10 −8 1 3
6 6 2 −9 8

Here is the sequence of tableaux:
Tableau 1 Tableau 2 Tableau 3

Column
Row 0 1 2 3
0 0 −1 −3 2
1 0 −1 0 0
2 0 0 −1 0
3 0 0 −2 1
4 20 2 2 1
5 10 −8 7 −3
6 6 2 7 −8

Cut 0 0 1 −2

Column
Row 0 1 2 3
0 0 −1 3 −4
1 0 −1 0 0
2 0 0 1 −2
3 0 0 2 −3
4 20 2 −2 5
5 10 −8 −7 11
6 6 2 −7 6

Cut 0 −1 −1 1

Column
Row 0 1 2 3
0 0 −5 −1 4
1 0 −1 0 0
2 0 −2 −1 2
3 0 −3 −1 3
4 20 7 3 −5
5 10 3 4 −11
6 6 8 −1 −6

Cut 0 1 −1 −1
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Tableau 4 Tableau 5 Tableau 6
Column

Row 0 1 2 3
0 0 5 −6 −1
1 0 1 −1 −1
2 0 2 −3 0
3 0 3 −4 0
4 20 −7 10 2
5 10 −3 7 −8
6 6 −8 7 2

Cut 0 −2 1 0

Column
Row 0 1 2 3
0 0 −7 6 −1
1 0 −1 1 −1
2 0 −4 3 0
3 0 −5 4 0
4 20 13 −10 2
5 10 11 −7 −8
6 6 6 −7 2

Cut 0 1 −1 −1

Column
Row 0 1 2 3
0 0 7 −1 −8
1 0 1 0 −2
2 0 4 −1 −4
3 0 5 −1 −5
4 20 −13 3 15
5 10 −11 4 3
6 6 −6 −1 8

Cut 0 −1 −1 1

Tableau 7
Column

Row 0 1 2 3
0 0 −1 −9 8
1 0 −1 −2 2
2 0 0 −5 4
3 0 0 −6 5
4 20 2 18 −15
5 10 −8 7 −3
6 6 2 7 −8

Cut 0 0 1 −2

This cut is the same as tableau 1, and RPA continues to use only
rows 5 and 6 as source rows for cuts. Since rows 5 and 6 are the
same here as in tableau 1, RPA continues without termination.
The sequence approaches x = (1, 2, 3), but it does not reach
it, even though the LPR objective value strictly decreases with
each cut.

Valid variations of Gomory’s algorithm are given by Young[64] and Glover[19].

IP Myth 21. new The problem of finding x ∈ � such that Ax = b, where A ∈ �m×n and
b ∈ �m, is NP-complete. next new B

My thanks to Heiko Vogel for pointing this out.

The key to this myth is that there are no bounds on x. (If we add x ≥ 0, we have the standard
form of a linear integer program, which is NP-complete.) This is the problem of solving linear
diophantine equations for which Brown[7] provides simple, polynomial-time algorithms. Also,
see Aardal, Hurkens, and Lenstra[1].

IP Myth 22. For any 0-1 program with a single constraint, there exists a B&B algorithm
that can determine if it is feasible in polynomial time.

The following is due to Jeroslow[35]:

Counterexample. max x1 : x ∈ {0, 1}n, 2x1 + 2x2 + · · ·+ 2xn = n.

This is infeasible for n odd, but any Branch-and-Bound (B&B) algorithm (that is, with
any rule for fixing values of fractional variables in the LP relaxation) must evaluate at
least 2dn/2e nodes before it discovers (and certifies) that it is infeasible.

Ed Klotz points out that modern B&B algorithms are more broadly construed to include
preprocessing, among other things, that would solve this example without exhaustive search.
The counterexample does emphasize the need for such things. (This is another example of
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how optimization software may use different conventions than in the theory — see LP Myth
16.)

IP Myth 23. There is a strongly polynomial algorithm to maximize a separable concave
function with one linear constraint.

The mathematical program is

max
n∑
j=1

fj(xj) : x ∈ �n+,
n∑
j=1

xj = b,

where each fj is concave on �+.

A strongly polynomial algorithm is one that is polynomial in the natural dimensions — that is,
n, and not on the size of the data — in particular, b. (See LP Myth 42 for specific examples of
how data values enter into the complexity.) Hochbaum[31] proves that the allocation problem
has polynomial complexity, and that it is strongly polynomial when the objective function
is linear. She proves the impossibility of the myth by showing that when the objective is
nonlinear (and non-quadratic), the time complexity depends upon log b.

Hochbaum treats the integer and continuous cases jointly, pointing out that for the continuous
case, we must define termination when

∣∣∣∣xk − x∗∣∣∣∣ ≤ ε for some specified (but arbitrary) ε > 0.
Otherwise, we can have no finite convergence, such as when x∗ is irrational.

She provides a specific example:

max 6x1 − x3
1 : x ∈ �2

+, x1 + x2 = 2.

The optimum is at x∗ = (
√

2, 2−
√

2).

IP Myth 24. An optimal schedule of jobs with deadlines on a single machine is given by the
Ratio Rule.

Thanks to Jan-Karel Lenstra for contributing this myth.

Smith[59] asserted this in the very early years, when simple rules were sought for special cases.
He proposed four ideas:

1. Shortest Processing Time (SPT) Rule: schedule jobs in non-decreasing order of process-
ing times.

2. If jobs are weighted, let tj/wj be the processing time over the (positive) weight. To
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minimize total weighted completion time, schedule jobs in non-decreasing order of tj/wj .
This is the Ratio Rule.

3. If each job j must be finished by a given deadline dj , one minimizes total completion
time by selecting from all jobs j that are eligible for the last position (that is, i for which
di ≥

∑
j tj) the one with largest ti; put that job in the last position and repeat. If, at

any point, there is no eligible job, there is no feasible schedule.
4. If each job j must be finished by a given deadline, one minimizes the total weighted

completion time by combining the ideas of (3) and (4) — that is, by applying the Ratio
Rule to the eligible job from the end of the schedule backwards.

Lenstra, Rinnooy Kan, and Brucker[43] prove that problem 4 is NP-hard, so the assertion is
a myth (unless P = NP ). Many thanks to Jan-Karel Lenstra for providing the following:

Counterexample. We have three jobs with process times: t = (2, 1, 1), deadlines: d =
(4, 4, 3), and weights: w = (7, 4, 1). The Ratio Rule yields the schedule (2, 3, 1) with
objective value 34. The optimal schedule is (1, 3, 2) with objective value 33.

IP Myth 25. The Dudek-Teuton job scheduling algorithm produces an optimal solution.

Dudek and Teuton[13] presented an early algorithm purported to guarantee an optimal solution
for an arbitrary problem with m machines and n jobs. That was before complexity theory,
so we now know that their polynomial algorithm could not make such a guarantee (unless
P = NP ).

Counterexample. Karush[38] provides the following: Let m = n = 3 with duration times:

Job
Machine 1 2 3

1 3 22 20
2 22 20 14
3 2 20 18

The optimal sequence is 2-3-1 with total makespan 82. The Dudek-Teuton algorithm puts
job 1 first, but the makespan of 1-2-3 is 83, and the makespan of 1-3-2 is 85.

IP Myth 26. If jobs are prioritized by the slack per remaining number of operations, higher
priority is given to jobs that have a greater number of remaining tasks for a given slack.

The intent to give the greater priority as indicated matches our intuition of scheduling the
jobs with many tasks remaining early in order to minimize the makespan. However, the slack
value can be negative (that is, the job is late), thus reversing the intent. The slack at time τ
is defined as:

si(τ) = di − ti − τ,

where di is the due date of job i and ti is its total processing time. The critical ratio used to
prioritize the jobs is the dynamic slack per remaining number of operations: si(τ)/n.

Counterexample. Adam and Surkis[2] provide the following:
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# Remaining Priority
Job Slack Operations Value Priority
1 10 2 10/2 = 5 5
2 10 5 10/5 = 2 4
3 −10 2 −10/2 = −5 1
4 −10 5 −10/5 = −2 3
5 −12 4 −12/4 = −3 2

Kanet[37] provides clarification about the rationale for the anomaly.

IP Myth 27. A no-wait flow-shop’s makespan cannot be worse by increasing the speed of
some machines.

Spieksma and Woeginger[60] provide the following:

Counterexample. Jobs 1, 2, and 3 are scheduled, each with three stages of operations as
shown in the following figure. The minimum makespan is 14.

Now suppose the time spent on each machine in stage 2 is cut in half. Because the problem
is a no-wait flow-shop, there cannot be any idle time between the processing of consecutive
operations of the same job. Thus, the same job order yields a makespan of 15.

This is the minimum makespan for the new problem with speedup in stage 2. (The job
orders 1-3-2 and 2-1-3 also have makespans of 15; job orders 2-3-1 and 3-1-2 have makespans
of 17; and, job order 3-2-1 has a makespan of 19.)

Spieksma and Woeginger provide variations on the speedup and establish the following:
For every real number r ≥ 1, there exists an instance of the no-wait flow-shop problem
with minimum makespan C∗ a speedup of processing time for some jobs and machines
such that the makespan is at least r C∗.
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IP Myth 28. The worst-case solution quality of the First-Fit bin-packing algorithm equals
the maximum feasible decomposition of the bin size.

Let α denote the bin size, and let L = {a1, . . . , an} be an ordered list of items with sizes
0 < s(ai) ≤ 1. Let OPT (L,α) denote the minimum number of bins needed to pack the items,
and let FF (L, 1) denote the number of bins of size 1 needed for a First-Fit packing of L. The
worst-case solution quality is the ratio:

R(α) = lim sup
N→∞

max
L

{
FF (L, 1)

N
: OPT (L,α) = N

}
.

A feasible decomposition of α is an ordered sequence of integers p1 ≤ p2 ≤ . . . , such that∑
i

1
pi

= α, p1 ≥ 2, and
∣∣{i : pi > 2}

∣∣ ≥ 2.

For example, for α = 1, p = (2, 3, 6) is a feasible decomposition. (Note that p2 > 2 to satisfy
the last condition.) Once we set p3 = 6, we are done since

1
p1

+ 1
p2

+ 1
p3

= 1
2 + 1

3 + 1
6 = 1 = α.

Let P(α) equal the set of feasible decompositions of α, and define the maximum feasible
decomposition:

W (α) = max
p∈P(α)

∑
i

1
pi − 1 .

For example, W (1) = 1 + 1
2 + 1

5 = 17
10 .

The myth asserts R(α) = W (α). This was conjectured by Garey, Graham, and Johnson[18],
upon noticing its truth for the special case of a bin size of 1: R(1) = W (1) = 17

10 , a curious
equation. Further, they found an efficient algorithm to compute W (α), so if the conjecture
proved true, we could compute the worst-case solution quality without solving the worst-case.

Counterexample. Shearer[58] provides the following. Let α = 1
3 + 1

7 + 1
62 = 641

1302 = 2564
5208 .

Consider a list L of 120 items with sizes:

s(ai) = 745
5208 , 1 ≤ i ≤ 30

s(ai) = 869
5208 , 31 ≤ i ≤ 60

s(a2i−1) = 1695
5208 , 31 ≤ i ≤ 60

s(a2i) = 1819
5208 , 31 ≤ i ≤ 60

The First-Fit algorithm packs L into 41 bins of size 1. The first five bins each contain 6
items of size 745

5208 ; the next six bins each contain 5 items of size 869
5208 ; and, the remaining

30 bins each contain 1 item of size 1695
5208 and 1 item of size 1819

5208 . An optimal packing uses
60 bins of size α, so R(α) ≥ 41

60 . However, W (α) = 1
2 + 1

6 + 1
61 = 2500

3660 <
41
60 .
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IP Myth 29. new Two TSP tours are adjacent only if there does not exist a distinct tour
that contains their intersection and is contained in their union. next new B

Adjacency is defined by the extreme points on the TSP polytope, which is contained in the
assignment polytope:

X =
{
x ∈ �n×n+ :

∑
i xij = 1, ∀j;

∑
j xij = 1, ∀i

}
.

For this myth, let xij = 1 if city j follows city i in the tour (there are other TSP assign-
ment models). Let ext(X) denote the extreme points of X, which are the (binary-valued)
permutation matrices. An extreme point is a tour if it corresponds to an arc-set of the form
t = {(1, j1), (j1, j2), . . . , (jn−1, 1)} such that j1j2 . . . jn−1 is a permutation of {2, . . . , n} (where
the home city is fixed at 1). Then, its corresponding extreme point in X is

xij =
{

1 if (i, j) ∈ t;
0 otherwise.

Other assignments form subtours — an extreme case is the diagonal assignment, X = I.
Restricting assignments to correspond to tours defines the TSP polytope:

T = convh
(
{x ∈ ext(X) : x↔ tour.}

)
.

Let t1, t2 be two tours that are adjacent extreme points of T . The condition of interest is
the non-existence of a tour t3 6= t1, t2 such that t1 ∩ t2 ⊂ t3 ⊂ t1 ∪ t2. The myth asserts
that this condition is implied by the polyhedral definition of adjacency: T = αT1 + (1− α)T2
for α ∈ (0, 1) implies T cannot be represented by any other convex combination of ext(T ).
(Equivalently, the line segment, [T1, T2], is an edge of T .)

Let Tij = {t ∈ ext(T ) : t1 ∩ t2 ⊂ t ⊂ t1 ∪ t2}. The myth asserts that

(T1 adjacent to T2)→(T12 \ {T1, T2} = ∅). (IP.7)

The intuition is that we can use tours in T12 \{T1, T2} to provide an alternative representation
for T ∈ (T1, T2), so T1, T2 could not be adjacent.

Murty[47] shows that the condition is sufficient, but necessity fails, as shown by Rao[52] with
the following 9-city example.

Counterexample.

t1 t2
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Rao shows that there are three tours that satisfy the condition:

t3 = {(1, 7), (7, 8), (8, 2), (2, 5), (5, 6), (6, 9), (9, 3), (3, 4), (4, 1)}
t4 = {(1, 7), (7, 8), (8, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 9), (9, 1)}
t5 = {(1, 2), (2, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 3), (3, 4), (4, 1)}

It is easy to verify that T12 = {t3, t4, t5}. Rao notes that arcs (3, 8), (7, 6), and (5, 4)
are in t2, but not in t3, t4, t5. Hence, each point in the open line segment, (T1, T2) must
be uniquely determined by αT1 + (1 − α)T2 for some α ∈ (0, 1) — that is, it cannot be
represented as another convex combination of the extreme points, so t1, t2 are adjacent
extreme points that do not satisfy the condition.

Rao proceeds to derive a necessary condition and a sufficient condition for two tours to be
non-adjacent. He proves that neither is both necessary and sufficient.

Also see Papadimtriou[50] for how the non-adjacency property renders insight into the com-
putational complexity of TSP, and see Heller[30] for other “neighbor” relations,

IP Myth 30. Suppose the edge weights satisfy the triangle inequality in a general routing
problem. Consider required nodes i, j, k such that (i, j) 6∈ E and

[
(k, `) ∈ E ↔ ` ∈ {i, j}

]
.

Then, the required nodes can be replaced by one required edge (i, j) with weight wij = wik+wkj.

Let G = [N,E] be an undirected graph with edge weights w ≥ 0. The General Routing
Problem (GRP) is to find a tour with minimum total weight that contains a specified subset of
nodes, N̂ , and a specified subset of edges, Ê. (Note that this specializes to the TSP if N̂ = N

and Ê = ∅ and to the Chinese Postman Problem if N̂ = ∅ and Ê = E.) The myth assumes
wij ≤ wik + wkj .

Orloff[48] introduced the reduction rule with the intuition that the added edge represents the
path i→ k → j. Lenstra and Rinnooy Kan[42] provide the following:

Counterexample. Let N̂ = N and Ê = ∅ in the following graph.

An optimal tour is
k → j → g → i→ h→ j → k

with total weight = 10.

Applying the reduction, the new GRP has N̂ = {g, h} and Ê = {(i, j)} with wij =
wik + wkj .
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An optimal tour is
i→ j → g → i→ h→ j → i

with total weight = 14.

(See Orloff’s rejoiner[49] and [42] for the merit of using the reduction rule as a heuristic.)

IP Myth 31. Increasing the optimality tolerance reduces the generated search tree of B&B.

Exact B&B closes a node when f̂ ≥ z, where f̂ is the estimate (lower bound) of the minimum
at a node and z is the best solution obtained so far. A node would close earlier if we relax this
to

f̂ ≥ z − ε,

where ε > 0 is a cutoff tolerance. At termination, the algorithm produces a near-optimal
solution (assuming an optimum exists) in the sense that

z ≤ z∗ + ε .

The myth asserts that using a positive tolerance results in a reduction in the total number of
nodes generated before termination.

Counterexample. Ibaraki[33] provides the following:
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Exact (ε = 0) ⇒ 6 nodes ε = 0.5 ⇒ 8 nodes

Ibaraki points out that, as in the counterexample, exact B&B may close a node that would
have generated a node that closes all other nodes. He proceeds to demonstrate that the size
of the search tree could increase with an increase in ε. He also considers relative-tolerance
cutoffs.

IP Myth 32. Increasing the number of processors in a parallel B&B algorithm, reduces the
generated search tree.

Lai and Sahni[41] measure performance by the number of iterations, I(n), for n processors. An
iteration of an n-processor model with N open nodes expands min{n, N} nodes. Assuming
maximization, each node is evaluated by computing an upper bound (such as with LPR).
Those nodes that are feasible and have an upper bound that is greater than the current best
value enter the pool; those that are infeasible or cannot have a better objective value are
discarded. Lai and Sahni provide the following:

Counterexample. Assume that the bound of each node is the optimum value (but not con-
firmed as an optimal solution value). The following shows the state tree. The n1-processor
model selects the left portion, resulting in reaching solution node A in 3 iterations (at
which point node B is closed without expansion). The n2-processor model selects the right
portion, expanding the sub-tree rooted at node B for 3k−1 more levels before closing those
leaves and finally evaluating node A.

They use this construction to prove:
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Let n1 < n2. For every k > 0, there exists a problem instance such that k I(n1) < I(n2).

The construction in the state tree has I(n2) = 3k+ 1 = k I(n1) + 1 > k I(n1). They also prove
that this cannot happen if the bound is not the optimum value (which allows node B and the
right-tree expansion to be candidate selections that are selected before node A).

IP Myth 33. In B&B it is best to branch from the largest upper bound (for maximization).

Fox et al.[16] provide the following:

Counterexample. The numbers next to each node in the following search tree are the upper
bounds. Assume node G contains the maximum whose value is 2.

The largest-upper-bound (LUB) branching rule searches the nodes in one of the orders:

1. A, B, C, D, E, F, G (H & I not generated)
2. A, B, D, C, E, H, I, F, G

The particular order depends upon the expansion rule and how ties are broken. After B
is expanded with children D & E, order 1 uses breadth-first search and chooses C; order 2
uses depth-first search and chooses D. Order 1 is better because it searches fewer nodes,
but order 2 could be the one generated by the LUB branching rule.
A key to whether LUB is in some sense an optimal branching rule partly depends upon
how ties are broken and the order in which the siblings are expanded. If the right-child is
expanded first (among those with the same upper bound), the orders become:

1’. A, B, E, D, C, G
2’. A, B, E, D, I, H, C, G

Order 1’ checks only 6 nodes, which is better than the left-child order of expansion.
In any case, the shortest path to the solution node is A, C, G, which does not follow the
LUB rule. Node B must still be expanded to confirm optimality at node G, so the full
sequence is 6 nodes: A, C, G, B, D, E (or E, D).

One alternative to LUB is to branch on the node with the least ambiguity — that is, fewest
binary variables that are not fixed[27]. The rhetoric for this choice is that we can reach closure
quickly, and a smart implementation computes look-ahead implications, generally arising from
logical conditions in the model. For example, selecting one project may force other projects
to be rejected, scheduling some job may force other schedule assignments, and so on. Thus,
suppose we are given two nodes with the following properties: node A has LPR bound 100
and 75 binary variables that have not been fixed, of which 20 are fractional; node B has LPR
bound 101 and 10 variables that have not been fixed, one of which is fractional. The LUB rule
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expands A and ignores the other information; the least-ambiguity rule expands B and ignores
the bound. (Hybrid rules use multiple criteria, of which these are two.)

Ties for node selection, whether with LUB or not, do occur in practice, partly because the
underlying problem has alternative optima, and partly due to a naive modeler ignoring sym-
metries. For example, in graph coloring, let xij = 1 if we color node i with color j. For
any solution, we can swap colors: x′ represents an equivalent coloring as x, but in the model
x′i,blue = xi,green and x′i,green = xi,blue. Thus, in the model, these are alternative solutions since
x 6= x′, and they have the same objective values, so if one does not add “symmetry exclusion
constraints,” ties are inevitable.

IP Background — Parallel Computation of a Schedule
In IP Myths 34–36 suppose we have n identical processors to perform computations in parallel.
Tasks are presented at once with known precedence relations: Ti ≺ Tj means task Ti must be
finished before task Tj can start. The order of the tasks is given by the list L = {Ti1 , . . . , Tir},
and the rule is that a processor takes the next task in L that is ready (that is, all predecessors
are finished). The processor time to perform task Ti is denoted by ti.

To illustrate, let L = {T1, . . . , T9} with associated process times, t = (3, 2, 2, 2, 4, 4, 4, 4, 9).
The precedence relations are:

T1 ≺ T9, T4 ≺ T5, T6, T7, T8.

Here is the time line for three processors:

The makespan is 12.

IP Myths 34–36 are given by Graham[26], who also derives bounds on the makespan ratio for
the improved system to the old, where “improved” is any combination of time reduction, added
processors, precedence relaxation, and list-order rearrangement.

IP Myth 34. If we reduce the computation time of each processor, the makespan cannot
increase.

Graham[26] provides the following:

Counterexample. Change the previous example to have t′ = t−1. The result is a makespan
of 13:
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IP Myth 35. If we add another processor, the makespan cannot increase.

Graham[26] provides the following:

Counterexample. The fourth processor results in a makespan of 15:

IP Myth 36. If we remove some precedence constraints, the makespan cannot increase.

Graham[26] provides the following:

Counterexample. Remove the precedence constraints, T4 ≺ T5 and T4 ≺ T6. This results in
a makespan of 16:

Tovey[61] extended Graham’s example as follows.

Counterexample. Using Tovey’s notation (nearly), the jobs are denoted: ai, b, wj , xk, y`,
zpq, where i = 1, . . . , A, j = 1, . . . ,W , k = 1, . . . , X, ` = 1, . . . , Y , p = 1, . . . , X, and
q = 1, . . . , n+ 1 (recall n = number of processors). The precedence relations are:

ai ≺ xk, ai ≺ y` ≺ z1q, b ≺ wj ≺ z1q, b ≺ y`, zpq ≺ zp+1,q
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for all i, j, k, `, q. (In Graham’s example, A = 6, W = 1, Y = 6, and X = 4.)

The figure on the right (taken from Tovey) shows the
precedence relations.

In any optimal schedule with n = 2 processors, b must precede some ai, but with n = 3
processors, all ai must precede b. If all ai must precede b, a schedule is not optimal for
n processors if, and only if, A + 1 6≡ 0 mod n. If b precedes some ai, a schedule is not
optimal for n+ 1 processors if, and only if, A ≡ 0 mod (n+ 1) and W < n.
In particular, consider n = 2 and Graham’s dimensions: a = (a1, . . . , a6), w = (w1),
y = (y1, . . . , y6), and x = (x1, . . . , x4). In this example, b does not precede any ai in an
optimal schedule. For those same dimensions, increasing n to 3, b must precede every ai
for the schedule to be optimal.

IP Myth 37. Given jobs with unit time, an optimal schedule on n processors is obtained by
assigning compatible jobs in a minimal partition.

This refers to an early algorithm by Fujii, Kasami, and Ninomiya[17], which is valid for two
processors and they conjectured extends to n > 2 processors.

Two jobs are compatible if neither must precede the other (that is, not adjacent in the transitive
closure of the precedence graph). The algorithm is to form a minimum number of subsets of
compatible jobs, such that each subset contains no more than n jobs. These are then assigned
sequentially, and the minimum makespan is the number of subsets. For example, suppose
T1 ≺ T2 ≺ · · · ≺ TN . Then, there are no compatible jobs, and the subsets are {T1}, . . . , {TN},
giving a minimum makespan of N , using only one processor (and having the other n − 1
processors idle). On the other hand, if the precedence relations are T1 ≺ T2 ≺ · · · ≺ TN

2
and

TN
2 +1 ≺ T2 ≺ · · · ≺ TN (with N even), then with two processors, the jobs can be partitioned

into subsets
{
T1, TN

2 +1
}
,
{
T2, TN

2 +2
}
, . . . ,

{
TN

2
, TN

}
. Then, the minimum makespan is N

2 ,
obtained from the algorithm by assigning:

processor 1 T1 T2 · · · TN
2

processor 2 TN
2 +1 TN

2 +2 · · · TN

The issue is whether this is valid for n > 2 processors. In the above example, for n = 3 suppose
N = 3k and the precedence relations are T1 ≺ · · · ≺ Tk, Tk+1 ≺ · · · ≺ T2k, T2k+1 ≺ · · · ≺ TN .
Then, we can partition the jobs into k subsets, and assign the jobs to achieve the minimum
makespan of N3 .
Counterexample. Kaufman[39] provides the following. Let T1 ≺ T2, T3 and T4 ≺ T5, T6. For

3 processors, the minimum makespan is 3.
processor 1 T1 T2 T6
processor 2 T4 T3
processor 3 T5
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The algorithm, however, obtains the partition
{
{T1, T5, T6}, {T4, T2, T3}

}
, giving the incor-

rect minimum makespan of 2. The partition satisfies the properties: each subset has no
more than 3 jobs, and they are compatible.

IP Background — Metaheuristics
A metaheuristic is a top-level general strategy that guides other heuristics to search for feasible
solutions in domains where the task is NP -hard. Examples include genetic algorithms, simu-
lated annealing, and tabu search. The state is a vector defined by the problem representation;
often the state is a solution. A key to any metaheuristic is the definition of neighborhood of
a state, denoted N (s). (Unlike the neighborhood defined in real analysis, we typically have
s 6∈ N (s).) One example is removing and/or adding an object to a knapsack. Another example
is replacing two arcs in a travelling salesman tour. A common neighborhood is complementing
one binary value:

N (x) = ∪j{x′ : x′i = xi for i 6= j, x′j = 1− xj}. (IP.8)

Let f be the objective value (or some measure of fitness used in a metaheuristic), which we
seek to maximize. The depth of a non-optimal feasible solution, x, is the minimum value d(x),
such that there exists a sequence <x0 = x, x1, . . . , xk> that satisfies the following conditions:

1. xi is feasible and xi ∈ N (xi−1) for i = 1, . . . , k
2. f(xk) > f(x0).
3. f(xi) ≥ f(x0) + d(x) for i = 1, . . . , n.

The depth of a problem instance P with respect to a neighborhood [and fitness function] is
d(P ) = max{d(x) : x ∈ X}, where X is the set of feasible solutions.

IP Myth 38. Computing the depth of a discrete optimization problem P with respect to a
neighborhood is at least as hard as solving P .

Woeginger[63] provides the following:

Counterexample. Let P be an instance of the Satisfiability Problem (SAT), which is NP -
complete. Let x be a truth setting and L(x) a logical expression whose truth value we seek.
Let f(x) be the truth value of L(x) (that is, 1 if true; 0 if false), so we seek to maximize f
over the 2n binary values.
Define the neighborhood as in (IP.8). Then, the depth of any non-optimal feasible solution
is 0 (with f(xi) = f(xi−1) = 0 for i = 1, . . . , k − 1 and f(xk) = 1), so d(P ) = 0. Further,
the depth of x is trivial to compute.
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IP Myth 39. Computing the depth of a discrete optimization problem P with respect to a
neighborhood is at most as hard as solving P .

Woeginger[63] provides the following:

Counterexample. Let P be an instance of the Satisfiability Problem (SAT). Let x be a truth
setting and L(x) a logical expression whose truth value we seek. Let the state of the system
be bit strings in {0, 1}n+2, where s = (x, sn+1, sn+2) and f(s) = −c(s), where

sn+1 = sn+2 = 0 ⇒ c(s) = 0
sn+1 = sn+2 = 1 ⇒ c(s) = 1

sn+1 6= sn+2, L(x) = 1 ⇒ c(s) = 1
sn+1 6= sn+2, L(x) = 0 ⇒ c(s) = 2

We seek to minimize c, and N (s) is defined to be the 1-bit flip (IP.8) plus s.
Woeginger proves: If L is satisfiable, d(P ) = 0. If L is not satisfiable, d(P ) = 1. This
proves that determining the depth is NP-hard. Further, a global minimum is found simply
by any output whose last two bits are zero. Thus, the myth is false (unless P = NP ).

IP Myth 40. In a metaheuristic search, it is better to start with a best-possible objective
value, even if it is not the global optimum.

Consider a binary IP and the neighborhood as (IP.8) plus complementing all (x′ = 1 − x), if
that is feasible.

Counterexample. Glover and Hao[21] provide the following:

max nx1 −
∑n
j=2 xj : x ∈ {0, 1}n, (n− 1)x1 −

∑n
j=2 xj ≤ 0.

The worst feasible solution is x = (0, 1, 1, . . . , 1). Complementing each x yields the global
optimum in one iteration. Starting at some other feasible solution, such as x = 0, causes
the search to re-visit x = 0 many times before reaching the worst solution (followed by the
global maximum).

Opportunity Knocks
Is it possible to characterize IPs for which the Myth is true? See [21] for deeper analysis.

IP Myth 41. For N sufficiently large, simulated annealing visits the global minimum within
N iterations with probability 1.

Fox[14, 15] provides the following:

Counterexample. Let X = {1, 2, 3} and f(X) = (1, 3, 0), so, x∗ = 3 is the global minimum.
The system state is the value of x, and the neighborhoods are: N(1) = {2}, N(2) = {1, 3},
and N(3) = {2}. The acceptance probability of an uphill move from x1 to x2 is given by:

P (X(k + 1) = x2 |X(k) = x1) = e
− f(x2)−f(x1)

Tk = e
− 2
Tk ,
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where Tk is the temperature at iteration k. Once the state moves from x1 to x2, it then
moves to x3, the global minimum. So, not visiting x3 is equivalent to remaining at x1
forever. That probability is given by:

P (X(1) = X(2) = · · · = X(k) = x1 |X(0) = x1) =
k∏
i=1

(
1− e−

2
Ti

)
.

Thus, the system does not reach the global minimum with probability 1 within any finite
number of iterations.

As the general theory goes, the example does converge to the global minimum asymptotically
with probability 1. However, the expected number of iterations is infinite. Specifically, for a
standard cooling schedule, Fox shows

lim
k→∞

(−k + E[N |N > k]) =∞.

In words, the longer the search has been unsuccessful in reaching the global minimum, the
longer the expected remaining time to reach it.

Fox provides variations that escape this difficulty (among others).

IP Myth 42. In simulated annealing, it is always better to let the temperature decrease.

Hajek and Sasaki[28] provide sufficient conditions for which no cooling temperature sequence is
better than a constant temperature. They then show how the conditions apply to a matching
problem, for which the following counterexample is a special case.

Counterexample. Let G be a simple path with 4 nodes, for which there are five matchings,
denoted x0 = ∅, x1 = {(1, 2)}, x2 = {(2, 3)}, x3 = {(3, 4)}, x4 = {(1, 2), (3, 4)}.

G x0 x1 x2 x3 x4

Let x be a matching, and let its neighborhood be any matching that differs by exactly one
edge:

N (x0) = {x1, x2, x3}
N (x1) = {x0, x4}
N (x2) = {x0}
N (x3) = {x0, x4}
N (x4) = {x1, x3}.
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The transition from xi to xj consists of two steps: (1) Select xj ∈ N (xi) with probability
Rij ; (2) Accept xj according to the following SA rule:

Pr(X(k + 1) = xj |X(k) = xi) =
{

1 if xj ⊃ xi;
e
− 1
Tk if xj ⊂ xi,

where Tk is the temperature. If xj is not accepted, set X(k + 1) = xi.

Let each neighbor be equally-likely to be selected in step 1: Rij = 1
|N (xi)| . Then, the

process is a Markov chain with the following transition probabilities:

x0 x1 x2 x3 x4

Q(Tk) =


0 1

3
1
3

1
3 0

1
2 e
− 1
Tk

1
2 (1− e−

1
Tk ) 0 0 1

2

e
− 1
Tk 0 1− e−

1
Tk 0 0

1
2 e
− 1
Tk 0 0 1

2 (1− e−
1
Tk ) 1

2

0 1
2 e
− 1
Tk 0 1

2 e
− 1
Tk 1− e−

1
Tk


x0

x1

x2

x3

x4

The issue is whether it is better to let {Tk} decrease or remain constant.
For Tk =∞, the search is completely random, and for Tk = 0 the local-maximum matching
x2 is an absorbing state.

Q(∞) =


0 1

3
1
3

1
3 0

1
2 0 0 0 1

2
1 0 0 0 0
1
2 0 0 0 1

2
0 1

2 0 1
2 0

 . Q(0) =


0 1

3
1
3

1
3 0

0 1
2 0 0 1

2

0 0 1 0 0
0 0 0 1

2
1
2

0 0 0 0 1

 .

Keeping the temperature constant at Tk = ∞ (or any value large enough to ensure ac-
ceptance), the system eventually reaches the global maximum, x4. Whenever the system
reaches the local maximum x2, it moves to x0. On the other hand, as Tk→ 0, the system
could be absorbed at x2. Thus, cooling is worse than the constant temperature.

Hajek and Sasaki conjecture the existence of other problem classes for which it is not optimal
to cool the temperature.

IP Myth 43. Simulated annealing converges in probability to an optimal solution.

Counterexample. Kolonko[40] provides the following job scheduling problem.

There are two jobs and three machines whose processing times
are shown on the right. There are eight solutions, represented by
the binary code of 0, . . . , 7. This is a 3-bit code that describes a
precedence of the jobs on each machine.

Job
Machine 1 2

A 1 2
B 4 3.5
C 6 5

The left figure below shows how the bit values correspond to the job precedences on each
machine — that is, the direction of the dotted arrows. The particular solution shown is
x2 = 010. The solutions are shown in the table, on the right.
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i 0 1 2 3 4 5 6 7
xi 000 001 010 011 100 101 110 111

Cost 16 19.5 21.5 17.5 18 21.5 20.5 16.5

The optimal solution is x0 with minimum cost 16.
The SA neighborhood is defined by (IP.8). Kolonko shows that the associated SA Markov
process converges in probability to the suboptimal solution x7.
The Markov state transition graph is shown on the
right. Each of the eight states can move to a neigh-
bor, which is the complement of one bit, with equal
probability. The thick arcs, labelled a, b, c, d, are
those leading to greater cost. They are accepted
with the probabilities:

a = b = e−3.5/t, c = d = e−4/t.

All downward transitions are accepted with prob-
ability 1 (because the cost decreases).

The steady-state probabilities (where πP = π) are given by: π = π̂/κ, where

π̂(x0) = 3c(6 + b+ 4d+ bd), π̂(x1) = 2ac(3 + b), (3 + 2d),
π̂(x2) = 3abc(3 + d), π̂(x3) = 6ac(3 + b),
π̂(x4) = 6ac(3 + d), π̂(x5) = 3abc(3 + d),
π̂(x6) = 2ac(3 + 2b), (3 + d), π̂(x7) = 3a(6 + 4b+ d+ bd),

and κ =
∑7
i=0 π̂(xi).

All values depend upon t (suppressed for notational convenience). As t→ 0, Kolonko shows
limt→ 0 C/a = 18, from which he concludes

lim
t→ 0

π = (0, 0, 0, 0, 0, 0, 1).

Thus, SA converges with probability 1 to the suboptimal solution, x7, and not to the
minimum, x0.

IP Myth 44. new Simulated annealing converges more slowly than steepest descent when
there is a unique optimum. next new B

My thanks to Peter Salamon for suggesting this.

Conventional wisdom suggests that a purposeful algorithm, like steepest descent, is better
than any form of random moves, except for the problem of converging to a local optimum.
Simulated annealing (SA) is generally thought of as a way to avoid entrapment at a local
optimum and move to a global optimum. Hence, the myth asserts that SA is not an algorithm
of choice when there is only one minimum, thereby making local entrapment a non-issue. To
dispel this myth, Hoffmann and Salamon[32] provide a family of examples.
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Counterexample. This is yet another example to dispel the myth. Consider states, X =
{0, 1, . . . , n}, and objective function, f(x) = x. Define neighborhoods as

N (x) = {x− 1, n} for x = 1, . . . , n− 1, N (0) = N (n) = {0}.

There is only one minimum, namely at x = 0. Starting at x = n− 1, steepest descent goes
through states n− 2, n− 3, . . . , 1, then ends by going to 0.
Compare this to SA using a cooling temperature of T = ∞ (that is, accept any uphill
change with probability 1) and the equally-likely neighborhood selection rule.

The underlying Markov process for n = 5 is given by the
transition matrix on the right. The expected number
of SA steps until absorption is

∑∞
i=2 i ( 1

2 )i−1 = 3.


1 0 0 0 0 0
0 1

2 0 0 0 1
2

0 0 1
2 0 0 1

2
0 0 0 1

2 0 1
2

0 0 0 0 1
2

1
2

1 0 0 0 0 0

 .

Thus, although it is not certain that SA reaches the global minimum in a finite number
of steps, it does get there faster on the average than steepest descent. In fact, since the
expected number of steps is independent of n, and steepest descent always takes n − 1
steps, SA terminates relatively much faster as n gets large.

The property to be recognized is that, as in the non-monotone method in NLP Myth 36
(p. 139), a particular surface may have a landscape such that a ‘shortcut’ to the optimum
requires the objective to worsen before it gets better. One may imagine a curved ridge or
helix that attracts steepest descent to follow it in tiny steps of improvement, whereas SA
has a probability of jumping through this. Such problems can be constructed that make
the probability arbitrarily close to 1 so that SA reaches the solution before steepest descent.
Specifically, the probability is 1 − ε if the helix pitch is ε. However, NLP and SA exploit
the landscape structure differently. NLP specifically trades off monotonicity with curvature,
observable from the iterates. SA does not observe a key property (like curvature) of the
landscape, as it moves. In the example, we could use purely random selection: Choose x with
probability 1

n+1 for x = 0, . . . , n. Then, the probability of visiting x = 0 at least once in

N trials is 1 −
(

1
n+1

)N
, which rapidly approaches 1. The expected number of trials before

reaching x = 0 is 2 + 1
n , which is less than the SA for all n, and it approaches 1 as n gets

large. Thus, while we can demonstrate the principle of benefit for allowing an objective-
worsening move, it remains to specify how this would be done without specific knowledge
of the landscape. There does not appear to be observable statistics to guide this. At the
very least, the neighborhood structure would have to be dynamic, using observed values to
determine what states are candidates from the current one.

IP Myth 45. new Using parallel processors to conduct multiple, independent random walks
reduces the total computation time. next new B

My thanks to Peter Salamon for suggesting this.

Following the approach by Salamon, Sibani, and Frost[55, Ch. 8], let {Ei(t)}Ni=1 denote the

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]



IP Myths February 20, 2010 Page 81

minimum energy of N random walks after t units of elapsed computer time. Then, define

E∗(t|N) = min
i=1,...,N

Ei(t).

Let Ft(ε) be the common Cumulative Distribution Function (cdf) of Ei(t) — that is, Ft(ε) =
Pr[Ei(t) ≤ ε]. Since the random walks are independent, we have

GN (ε, t) def= Pr[E∗(t |N) ≤ ε] = 1− (1− Ft(ε))N .

For a discrete distribution, say ε ∈ {0, . . . , Emax}, the probability mass function is

pN (ε, t) = (1− Ft(ε))N − (1− Ft(ε+1))N . (IP.9)

Suppose we allocate T computer time. Then, we want to compare E[E∗(T | 1)], E[E∗(T/2 | 2)],
. . . , E[E∗(T/N |N)]. The myth asserts N > 1 minimizes the expected energy found — that
is, use N random walkers for T/N time units instead of just one processor for T time units.
Formally, an optimal ensemble size is a solution to

max
N

E[E∗(T/N |N)] : N ∈ {1, . . . , Nmax}.

Counterexample. Salamon, Sibani, and Frost[55] provide the following (Example 8.1, p. 59).
Consider Nmax = 2 and energy values in {0, 1, . . . , 9} with probabilities as follows:

ε p(ε, T/2) p(ε, T )
0 0.0010 0.0011
1 0.0020 0.0022
2 0.0030 0.0040
3 0.0040 0.0060
4 0.1000 0.1400
5 0.2000 0.3000
6 0.3000 0.4000
7 0.2000 0.1100
8 0.1000 0.0347
9 0.0900 0.0020

E[E∗(T, 1)] =
9∑
ε=0

ε p(ε, T ) = 5.554

E[E∗(T/2, 2)] =
9∑
ε=0

ε p2(ε, T/2) = 5.425,

where p2(·, T/2) is the probability mass function (IP.9) for N = 2. Salamon et al.[55] give
the numerical breakdown to derive

p2(·, T/2) = (0.002, 0.004, 0.006, 0.008, 0.188, 0.316, 0.324, 0.116, 0.028, 0.008).

This yields the lower expected value, 5.425, which thus shows that it is possible to do better
with only one processor than to have two processors run independent random walks in half
the time each.
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Salamon et al. proceed to illustrate that there is eventually a law of diminishing returns with
the number processors, even with other objective functions, such as minimizing the median
(rather than mean) value. They provide an example where the optimal ensemble size is N =
6 � Nmax. In terms of general parallel-processing nomenclature, the speedup is super-linear
for fewer than the optimal ensemble size, then it becomes sub-linear.
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Dynamic Programming
A dynamic program (DP) is one that can be solved as a sequence of state-dependent op-
timization problems. When the underlying problem is dynamic, time provides the natural
ordering for sequential optimization. However, DP is also a technique used to decompose a
static problem into a sequence of lower-dimensional decision problems. A classical example of
this decomposition is the knapsack problem:

max
∑
j cjxj :

∑
j ajxj ≤ b, x ∈ �n+,

where a, c > 0. (See Martello and Toth[21] for a more extensive introduction.) A DP formula-
tion of this is the forward recursion:

fk(s) = max {cjxj + fk−1(s− ajxj) : xj ∈ �+, ajxj ≤ s} for s = 0, 1, . . . , b,

for k = 1, . . . , n and f0(s) = 0 for all s = 0, . . . , b. The DP algorithm starts with k = 0
(with f0(s) = 0 for s ≥ 0), and it proceeds forward: k = 1, 2, . . . , n. The solution value to
the original problem is fn(b), and x∗ is computed by backtracking through the 1-dimensional
optimal solutions.

At the foundation is Bellman’s Principle of Optimality[3]:

“An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with regard
to the state resulting from the first decision.”

This is what enables us to decompose an n-variable problem into a sequence of 1-variable
problems. If the number of states and decisions is finite, this is equivalent to a shortest path
through a network. The nodes are the (state, stage) pairs and the arcs are the transitions
resulting from the decision.

In its natural time-ordered form, DP represents a sequential decision process: a discrete-time
process characterized by a sequence of states, where the next state depends upon the current
state and decision. (It does not upon the rest of the history of states and decisions.) At each
time period, the decision yields a return and a state transition. Here is the backward DP
recursion:

fk(s) = max
x∈Xk(s)

{rk(s, x) + fk+1(Tk(s, x))},

where Xk(s) is the set of decisions upon entering time period k in state s; rk(s, x) is the
immediate return for choosing x ∈ Xk(s); and, the last term is the total future return after
transitioning to the new state, Tk(s, x). This is illustrated in the following diagram:
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If the time periods are long enough, the present value is used with a discount factor, β ∈ (0, 1]:

fk(s) = max
x∈Xk(s)

{rk(s, x) + βfk+1(Tk(s, x))}.

So, f0(s0) =
∑n
k=1 β

k−1rt(sk, x∗k), where {x∗k} are the decisions made at each time period,
and the state sequence is given by sk = Tk(sk−1, x

∗
k) for k = 1, . . . , n. Denote a policy by

πk(s) = decision made at time k upon entering in state s. An optimal policy maximizes f0(s);
equivalently, π∗k(s) = x∗k for some x∗k ∈ argmaxx∈Xk(s){rk(s, x) + βfk+1(Tk(s, x))}.

The DP is stationary if the decision set and functions are inde-
pendent of time: Xk = X, rk = r, and Tk = T . A stationary
policy is a function of state, but not of time: π(s) ∈ X(s). It
specifies the decision to be taken. This is illustrated on the
right.

A randomized policy is one that is specified by Pt(s, x) = probability that πt(s) = x when the
system is in state s at time t. The actual decision is determined by some random selection
method according to P . In general, Pt(s, x) ∈ [0, 1] and for finite or denumerable decision
sets,

∑
x∈Xt(s) Pt(s, x) = 1 for all s. (Pt(s, x) = 0 for x 6∈ Xt(s).) The non-randomized policy,

a.k.a., pure policy, is the special case: Pt(s, πt(s)) = 1 for all s, t; otherwise, Pt(s, x) < 1 for
at least one x ∈ Xt(s) for some s, t.

DP Myth 1. Given a separable objective function, the Principle of Optimality enables the
decomposition into a series of smaller optimization problems over a state space. In particular,
suppose

R(x) = r1(x1)⊕ r2(x2)⊕ · · · ⊕ rn(xn)

over the separable domain, X = X1×X2×· · ·×Xn. Further, we have a simple limit constraint,∑n
j=1 xj ≤ b. Then,

maxx∈X{R(x) :
∑n
j=1 xj ≤ b} = maxs≤b fn(s),

where

fj(s) = max
xj∈Xj

{rj(xj)⊕ fj−1(s− xj) : s− xj ≤ b} for j = 1, . . . , n, s ≤ b.

with f0(s) = i = identity element for ⊕ (= 0 if ⊕ is ordinary addition; = 1 if ⊕ is ordinary
multiplication).
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The Principle of Optimality was originally developed for additive processes (where ⊕ is simple
addition). Mitten[22] pointed out that non-additive processes may not decompose directly, as
he developed a general framework.

Counterexample. f(x1, x2) = x1x2 and X1 = X2 = [−2, 1].
For b ≥ −4, the 2-variable maximum value is 4. However, f1(s) = 1 for all s ≤ 1, which
yields f2(s) = 1 for all s ≤ 2. The DP solution is thus x = (1, 1) with R(x) = 1.

The problem is that ⊕ violates Mitten’s monotonicity condition on this domain.

DP Myth 2. The Principle of Optimality is a necessary condition for the optimality of a
policy.

This myth and the following counterexample are given by Porteus[24].

Counterexample. Let the state space be the interval [0, 1]. For each state there are two pos-
sible decisions: X(s) = {0, 1}. The immediate return is the same for each state: r(s, x) = x.
Regardless of the decision and current state, the state transition is a uniform random vari-
able. The objective is the discounted total return with discount factor β < 1.
It is optimal to set xn(s) = 1 for all n and all states, s. Consider the alternative policy
that sets xk(s) = 1 for s 6= 1. This yields the same expected total discounted return, but
it violates the necessity of the Principle of Optimality.

Because the probability of any one return is zero, what is done for just one decision for one
state has no effect on the objective value.

DP Myth 3. In a dynamic lot size inventory model, decreasing setup costs does not increase
total inventory.

The intuition behind this is that inventory is caused by the setup cost. In the Economic Order
Quantity (EOQ) model, we have

Q =
√

2Kd
h

,

where Q is the min-cost order quantity, K is the setup cost, d is the demand, and h is the
holding cost. Thus, reducing the setup cost does reduce the EOQ. However, this does not
carry over to the dynamic lot size problem, where costs and demands occur over time, and the
decision variables are how much to produce in each period to satisfy the demands.

The DP recursion is given by:

ft(y) = min
x≥0

{
pt(x) + ht(x+ y − dt) + ft−1(x+ y − dt) : x+ y ≥ dt

}
, for t = 1, . . . , N

f0(0) = 0; f0(y) =∞ for y > 0,

where y is the inventory level (state), starting with y0 = 0, x is the production level, pt is the
production cost in period t, dt is the demand, and ht is the 1-period holding cost in period t
for the new inventory level, x+ y − dt.

Zangwill[35] provides further discussion and the following:
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Counterexample. A plant runs two shifts a day, a morning shift and a night shift. Consider
two days of its operation which we divide into four periods. Designate period 1 as the
morning shift of day 1, period 2 as the night shift of day 1, with periods 3 and 4 the day
and night shifts, respectively, of day 2. Suppose the product demand during each shift is
3 units. Let the variable production cost be linear and stationary: pt(xt) = pxt for all
t. Because total production equals total demand, this form eliminates variable production
cost as a factor in the objective. What remains is the setup cost,

∑
tKtδ(xt), where

δ(x) =
{

1 if x > 0;
0 otherwise.

Let the holding cost be ht(yt) = yt, for all t, where yt is the inventory at the end of period
t. Thus, the dynamic lot size model is given by:

min
4∑
t=1

(Ktδ(xt) + yt) : x, y ≥ 0,

yt−1 + xt − yt = dt, with y0 = 0.

Scene 1. At present the plant is quite busy during the day, and the setup costs during the
day are higher than at night. In particular K1 = K3 = 8, K2 = K4 = 5. The optimal
production schedule is x∗ = (3, 6, 0, 3) with associated inventory levels y∗ = (0, 3, 0, 0).
Scene 2. The engineering department undertakes to reduce setup costs and thereby move
closer to a Zero-Inventory system. After considerable analysis, they conceive how to use
the greater range of talent available during the day, which enables them to reduce setup
costs more during the day than at night. After the engineering department completes its
task, the setup costs are significantly reduced and become K1 = K3 = 1, K2 = K4 = 4.
All other costs remain the same. The new optimal production schedule is x′ = (6, 0, 6, 0)
with associated inventory levels y′ = (3, 0, 3, 0). Even though all setup costs have been cut
(and no other changes made), the total inventory level has doubled.

Zangwill provides conditions under which decreasing setup costs results in decreasing inventory.
The key feature of the counterexample is that the day-shift reduction is different from the
night-shift reduction.

DP Myth 4. In a dynamic lot size inventory model, decreasing setup costs does not increase
minimum total cost.

Zangwill[35] provides further discussion and the following:

Counterexample. To manufacture a particular product requires three separate operations,
call them I, II, and III. Suppose also that five workstations exist, and each workstation can
do the operations enumerated:

A={I}, B={II}, C={III}, D={I, II}, E={II, III}.

For example, workstation A can do only operation I whereas station D can accomplish
both operation I and operation II. Since all three operations are required to complete the
product, there are three possible routings: A→B→C, A→E, and D→C. For example, route
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A→E accomplishes operation I at station A and station E does II and III. Generally, the
various workstations are scheduled carefully with the work flow balanced and optimally
allocated.
Upon occasion, an emergency rush order for the product arises, which is costly since it
disrupts operations. The more emergency orders that occur during a day the more costly
it becomes because additional disruptions cause the regular schedule to become increasingly
rushed. Initially, suppose for an emergency order on a workstation that the cost for the
xth emergency order that day is

qA(x) = qC(x) = 10 + 10x, qD(x) = qB(x) = qE(x) = 31 + x.

Here qD(x) = 31 + x means that for workstation D, the setup cost is 31 for processing an
emergency order, and x is the additional cost if x− 1 emergency orders have already been
processed at workstation D. The cost increases as more emergency orders are processed at
a workstation, as mentioned, because of the increased disruption.
The expeditor is the individual who juggles the work and tries to process the emergency
as inexpensively as possible by selecting the routing. The cost depends not only on which
workstations are along the route but also on how many emergencies a workstation has
already had to contend with that day. Given the costs, here is the minimum cost for
processing if there are one or two emergencies in a day:
If one emergency occurs, an optimal route is A→E at a cost of 52.
If a second emergency occurs, an optimal route is D→C, a cost of 52.

Thus, if one emergency occurs, the total cost is 52. Should two emergencies occur, the
total cost is 104.
Suppose the setup cost for an emergency on workstation B is cut from 31 to 10: qB(x) =
10 + x. All other costs remain the same. Now we have:

If one emergency occurs, an optimal route is A→B→C at a cost of 51.
If a second emergency occurs, an optimal route is A→E, at a cost of 62.

Thus, the cost of one emergency during the day is 51, but if two emergencies occur, the
cost is 113. If we are unfortunate enough to get two emergencies during the day, the cost
is higher after the setup cost reduction, so the setup cost reduction has actually increased
the minimum total cost.

DP Myth 5. The Federgruen-Lee algorithm produces an optimal solution to the dynamic lot
size model with quantity discount.

Federgruen and Lee[7] proposed a DP algorithm, but there are special cases for which it does
not necessarily produce an optimal solution.

Notation:
Dt demand in period t
Kt fixed setup cost in period t
ct unit purchase price in period t
ht unit holding cost
N discount quantity
r discount rate
xt amount purchased in period t
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The model has xt ≥ N→ purchase cost = ct(1− r) and holding cost = ht(1− r).

Counterexample. Xu and Lu[34] provide the following: n = 4, D = (10, 40, 80, 20), K =
(150, 150, 150, 150), c = (8, 8, 8, 8), h = (5, 5, 5, 5), N = 75, and r = 0.1. The Federgruen-
Lee algorithm obtains x = D, with a total cost of $1,736. An optimal solution is x∗ =
(10, 40, 100, 0), with a total cost of $1,660.

Xu and Lu give more insights into the cause of the algorithm’s failure. Another cause is given
by the following:

Counterexample. n = 3, D = (30, 30, 10), K = (60, 60, 60), c = (10, 10, 10), h = (2, 2, 2),
N = 60, and r = 0.1. The Federgruen-Lee algorithm obtains x = (60, 0, 10), with a total
cost of $814. An optimal solution is x∗ = (70, 0, 0), with a total cost of $762.

Xu and Lu presented a modified algorithm to overcome such counterexamples.

DP Myth 6. Consider a dynamic lot size problem in which lead times are stochastic, and
shortages are backlogged. Optimal production levels still satisfy the property that they are zero
with positive incoming inventory and otherwise equal the sum of successive demands.

The appeal of this myth is that the property holds with zero lead times. In that case, whenever
there is zero inventory upon entering period t, the optimal production level is x∗t =

∑t′

k=t dk
for some t′ ≥ t. If the entering inventory is positive, it is enough to meet the demand and
x∗t = 0. More generally, if the lead time of production in period t is Lt, the zero-inventory
point is at period t′ = min{k : k ≥ t + L, dk > 0}. Thus, x∗t y∗t′−1 = 0 is the optimality
property in question.

Anderson[1] provides the following:

Counterexample. The horizon is 9 periods with d5 = 2, d8 = 3, and dt = 0 for t 6= 5, 8.
Setup costs are all zero, and the unit production costs are p1 = 2, p2 = 5, p4 = 30, p8 = 3,
and pt = 1000 for t = 3, 6, 7, 8, 9. The holding costs are all zero, and the 1-period unit
shortage costs are nonzero for s5 = s9 = 1000.

Figure taken from [1].

Production cost of 1000 is enough to render x∗3 = x∗5 = x∗6 = x∗7 = x∗9 = 0 in every optimal
solution, so lead times for those periods are not shown. The total production cost is then
2x1 + 5x2 + 30x4 + 3x8.
The total shortage costs for each of the two random lead times are given by:

L2 = 1: − 1000(x2 + x4 − 2)− − 1000(x1 + (x2 + x4 − 2)+ + x8 − 3)−

L2 = 5: − 1000(x4 − 2)− − 1000(x1 + (x2 + x4 − 2)+ + x8 − 3)−
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To avoid the 1000-unit costs for shortages, every optimal policy sets x∗2 + x4 ≥ 2, and
x1 + x2 + x4 + x8 ≥ 1.
Since this is a DP, the production levels x4, x8 are determined after the lead time from
period 2 becomes known. The optimal policy is to set x∗1 = 1, x∗2 = 2, and

x∗4 = 2, x∗8 = 0 if lead time = 5
x∗4 = 0, x∗8 = 2 if lead time = 1.

Since the lead times in period 2 are equally-likely, the total expected cost is

2 + 10 + 1
2 (30× 2 + 3× 2) = 45.

Notice that the zero-inventory point for period 1 occurs at period 8 for the arrival pattern
in which the lead time of x∗2 is 5 periods — that is, x∗1 > 0 and y7 > 0 (where the
zero-inventory point of period 1 is period 8), thus violating the myth’s indicated property.

DP Myth 7. In a dynamic lot size problem, a stochastically greater lead time cannot result
in a lower optimal average cost.

Let L1, L2 be random lead times. Then, L1 is stochastically greater than L2, denoted
L1 ≥st L2, if

Pr[L1 ≥ `] ≥ Pr[L2 ≥ `] for all `.

The underlying model is continuous-time, single-item, where demands form a compound Pois-
son process — demands occur at epochs with random batch size. Here we assume the batch
size is 1. A stationary policy is optimal, where the decision variables are the target inventory
levels. (This is called a base-stock policy, and “target” is used when the demand structure is
random.)

Notation:
h unit holding cost rate
p unit shortage cost rate
D lead time demand
Ψ cdf of D
y target inventory level for base-stock policy

Only the holding and shortage costs depend upon lead time demand, so we ignore ordering
costs for purposes of policy comparisons. The expected average cost is: ordering cost +

lead-time-dependent costs = E[h(y −D)+ + p(D − y)+].

Counterexample. Song[28] provides the following: Pr[L1 = 1] = 1 and Pr[L2 = 1] = 0.7,
Pr[L2 = 0.1] = 0.3. Note that L1 ≥st L2. Let h = 2, p = 9, and the two cdfs:

Ψ1(0) = 0.3679 Ψ1(1) = 0.7358 Ψ1(2) = 0.9197
Ψ2(0) = 0.5290 Ψ2(1) = 0.8137 Ψ2(2) = 0.9437

The optimal target inventory for each lead time is y∗1 = y∗2 = 2. Their costs differ by

E[h(y −D1)+ + p(D1 − y)+]− E[h(y −D2)+ + p(D2 − y)+] = 3.14− 3.24 < 0.

Hence, the stochastically greater lead time has lower average cost, contrary to the myth.

Song also analyzes the effect of more variable lead time (with equal means).
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DP Myth 8. In a multi-item, base-stock inventory system, the total order fill rate cannot
exceed the independent fill rate.

The underlying model is a continuous-time, multi-item inventory system, where items are
consumed by demand types. Demand rates define a Poisson process, for which a stationary
base-stock policy (see p. 91) minimizes the average cost. An order fill rate is the probability
of satisfying demand immediately.

The total order fill rate is given by:

FT =
K∑
k=1

qkfk,

where fk is the type-k fill rate, and qk is the probability that the demand is of type k. The
independent fill rate, which is used to approximate FT , assumes all demands are independent
of all other demands:

FI =
n∑
i=1

QiFi,

where Fi is the fill rate of item i, and Qi is the demand rate for item i. Q is determined by q:

Qi = 1
κ

∑
k∈S(i)

qk,

where S(i) is the set of types that consume item i, and κ =
∑n
i=1
∑
k∈S(i) qk. The myth

asserts FT ≤ FI.
Counterexample. Song[29] provides the following: Let n = 3, all lead times are 1, and the

overall demand rate is 1. Let K = 7 with q = (0.01, 0.01, 0.85, 0.03, 0.01, 0.01, 0.08) and

S(1) = {1, 4, 5, 7}, S(2) = {2, 4, 6, 7}, S(3) = {3, 5, 6, 7}.

Let the base-stock levels be (1, 1, 4). Then, f = (0.878, 0.878, 0.984, 0.861, 0.868, 0.868, 0.858),
so F = (3.465, 3.465, 3.578), which yields the contradiction: FT = 0.965 > FI = 0.961.

DP Myth 9. If inventories for substitute products are pooled by a centralized system, the
optimal total base-stock does not increase.

Base Stock

Separate Inventories Pooled Inventory
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Let x be the vector of base-stock inventory levels, and let fj(x) denote the associated fill rate
— that is, the probability of satisfying demand immediately. The respective mathematical
programs are:

Not Pooled Pooled
min c(x1 + x2) : f1(x1) ≥ α, f2(x2) ≥ α min cy : f1,2(y) ≥ α

x ≥ 0, x1 + x2 ≤ U 0 ≤ y ≤ U,

where U is the total storage limit (note the same costs and fill-rate requirements). We assume
a Poisson demand distribution (IID) with rate λ and a FIFO allocation rule. So,

fi(xi) = e−λi
xi∑
k=0

λki
k! for i = 1, 2

f1,2(y) = e−(λ1+λ2)
y∑
k=0

(λ1 + λ2)k

k! .

Let x∗ and y∗ be optimal solutions to the respective mathematical programs. The myth asserts
x∗1 + x∗2 ≥ y∗.

Counterexample. The following is based upon Song and Zhao[30]. Let λ1 = λ2 = 1 and
α = 0.73. Then, the solution to the unpooled problem is x∗1 = x∗2 = 1 with fi(x∗i ) =
0.735 > α. The solution to the pooled problem is y∗ = 3 with f1,2(y∗) = 0.857 (but
f1,2(2) = 0.677 < α).

Note that this also shows a key property: x1 + x2 need not be feasible in the pooled
problem even if x is feasible in the unpooled problem. For this example, we could choose
any α ∈ (0.677, 0.735) with x1 = x2 = 1. This occurs with small inventory levels because
for y =

∑
i xi sufficiently large

min
i

e−λi
xi∑
k=0

λki
k! ≤ e

−
∑

i
λi

y∑
k=0

(
∑
i λi)

k

k! .

Song and Zhao provide related counterexamples to propositions that intuitively seem true.
Moreover, they consider a more general system with lead times that may, or may not, be
equal. Also see SF Myth 8.

DP Myth 10. A manufacturer can set a guaranteed customer-service level by knowing the
supplier’s service level.

The model is a Markov chain with states equal to (i, j) ≥ 0, where i is the supplier’s level,
and j is the backorder by the manufacturer. (It suffices to limit the states to those that
are reachable from (s, 0), where s is the supplier’s base-stock level.) Let P(i, j) denote the
steady-state probability of being in state (i, j).

The manufacturer’s demand is d > 0 in each period. The supplier’s maximum production
capacity is d + e, where e > 0, but it is possible that none of that capacity is available in a
period. The actual capacity in period t is thus a random variable, κt, with

Pr[κt = d+ e] = p

Pr[κt = 0] = 1− p,
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where 0 < p < 1. The manufacturer’s capacity is d+ b, where b > 0.

The manufacturer’s service level is measured by the probability of a backorder:

αm =
s∑
i=0

∞∑
j=1

P(i, j).

This says that regardless of the supplier’s inventory (that is, for all i), state (i, j) has a
backorder for all j > 0 (by definition).

The supplier’s service level is measured by the probability of a shortage:

αs =
∞∑
j=0

d+min{j,b}−1∑
i=0

P(i, j).

This says that for all j) the supplier incurs a shortage when its inventory is less than the
manufacturer’s capacity — that is, i < d + b — and less than the demand plus backorder —
that is, i < d+ j. Hence, i ≤ d+ min{b, j} − 1.

The myth asserts that there exists a function φ such that αm = φ(αs). We’ll relax that to
assert that the manufacturer’s service level can be approximately determined by the supplier’s
service level:

αm = φ(αs)± ε for ε < 1%.

Counterexample. Choi, Dai, and Song[6] provide the following:

The supplier’s service level is approximately 5% for a range of parameter values. However,
the manufacturer’s service level varies greatly, from about 7% to 34%. Thus, the manufac-
turer’s service level depends upon how the supplier achieves its service level — that is, the
parameter settings.

Choi et al. provide details and dispel other myths in their analysis of vendor-managed-
inventory programs.
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DP Myth 11. A Bayesian optimal ordering level is less than a non-Bayesian optimal ordering
level.

The difference between the models is that the Bayesian updates the demand distribution as
demands become known, thus affecting new decisions. The intuition is that with greater
knowledge, we can maintain shortage risk while decreasing ordering and holding costs.

We shall assume the DP is stationary, and that the set of possible demands is finite: D =
{0, 1, . . . , D}. The associated probabilities, p = (p0, . . . , pD), are unknown but have a known
pdf, with parameters α = (α0, . . . , αD). The estimate of the probabilities is

pi(α) = αi∑D
j=0 αj

. (DP.10)

Let the state variable be the inventory level, s, so the non-Bayesian DP recursion is:

fn(s) = min
x≥0

cx+
D∑
i=0

pi
[
q(i− s− x)+ + fn+1(s+ x− i)

]
, for n < N, (DP.11a)

fN (s) = min
x≥0

cx+
D∑
i=0

pi q(i− s− x)+, (DP.11b)

where c is the unit ordering cost (no setup cost), and q is the unit shortage cost. (Assume no
holding cost.)

The demand probabilities, p, remain equal to the initial estimate, given by (DP.10). Note that
the ending inventory, s+x− i, which is passed to period n+ 1, could be negative. This means
shortage continues to incur costs for each period that it remains unfulfilled.

Assume the pdf of the probabilities is a Dirichlet distribution of order D+1. Then, for demand
i in period 1, the Bayesian update is to increase αi ← αi+1, and keep αj unchanged for j 6= i.
Extending the state to include the previous period’s demand, d, the Bayesian DP recursion is:

Bn(d, s) = min
X≥0

cX +
D∑
i=0

p′i
[
q(i− s−X)+ +Bn+1(i, s+X − i)

]
for 1 < n < N (DP.12a)

BN (d, s) = min
X≥0

cX +
D∑
i=0

p′i q(i− s−X)+ (DP.12b)

B1(s) = min
X≥0

cX +
D∑
i=0

pi
[
q(i− s−X)+ +B2(i, s+X − i)

]
(DP.12c)

where α is updated to be α + ed, which yields the probability update: p′ = p(α + ed), for
n > 1. For n = 1, the original α is used to estimate p, and demand is not part of the state.

Counterexample. Azoury and Miller[2] provide the following 2-period instance: D = 2,
c = 1, and q = 1.00999. We assume that the initial inventory is zero, and α = (1, 97, 1).
The initial probability estimates for both models is p = (1, 97, 1)/99.

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]



Page 96 February 20, 2010 DP Myths

For the non-Bayesian model, the costs for period 2 are:

x s = −2 s = −1 s = 0 s = 1 s = 2
0 3.029970 2.019980 1.009990 0.010202 0.000000
1 3.019980 2.009992 1.010202 1.000000 1.000000
2 3.009990 2.010202 2.000000 2.000000 2.000000
3 3.010202 3.000000 3.000000 3.000000 3.000000
4 4.000000 4.000000 4.000000 4.000000 4.000000

f2(s) 3.009990 2.009990 1.009990 0.010201 0.000000
x∗2(s) 2 1 0 0 0

Using the non-Bayesian DP recursion (DP.11), we compute f1(0) = 2.0102 with x∗1(0) = 1.
Here are some details:

x x+ qEi[(i− x)+] Ei[f2(x− i)] Total
0 1.009990 2.009990 3.019980
1 1.010202 1.009990 2.020194 ← min
2 2.000000 0.020198 2.020198
3 3.000000 0.000103 3.000103
4 4.000000 0 4.000000

Now consider the Bayesian model, using (DP.12), starting with the last stage. The following
table entries are B2(d, s).

d s = −2 s = −1 s = 0 s = 1 s = 2
0 2.99989 1.99989 0.99989 0.01010 0
1 3.00999 2.00999 1.00999 0.01010 0
2 3.02009 2.02009 1.02009 0.02020 0

The Bayesian update of the probabilities are:

d p′0 p′1 p′2
0 2

100
97

100
1

100
1 1

100
98

100
1

100

2 1
100

97
100

2
100

Here are the total costs for each ordering level in period 2 for some states (X∗(s, d) is in
bold):

s d X = 0 X = 1 X = 2 X = 3 X = 4 B2(s, d)
−1 0 2.00988 1.99989 2.01010 3.00000 4.00000 1.99989

1 2.01998 2.00999 2.01010 3.00000 4.00000 2.00999
2 2.03008 2.02009 2.02020 3.00000 4.00000 2.02009

0 0 0.99989 1.01010 2.00000 3.00000 4.00000 0.99989
1 1.00999 1.01010 2.00000 3.00000 4.00000 1.00999
2 1.02009 1.02020 2.00000 3.00000 4.00000 1.02009

1 0 0.01010 1.00000 2.00000 3.00000 4.00000 0.01010
1 0.01010 1.00000 2.00000 3.00000 4.00000 0.01010
2 0.02020 1.00000 2.00000 3.00000 4.00000 0.02020
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Using B2 and the Bayesian update of α (and hence p), we obtain B1(0) = 2.0202, with
X∗1 (0) = 2. Here are some details:

x x+ qEi[(i− x)+] Ei[B2(i, x− i)] Total
0 1.009990 2.009990 3.019980
1 1.010202 1.010093 2.020295
2 2.000000 0.020201 2.020201 ← min
3 3.000000 0.000204 3.000204
4 4.000000 0 4.000000

The Bayesian ordering level is greater than the non-Bayesian, thus contradicting the myth.

Caveate: I used a different DP recursion, so my shortage and cost calculations may not seem
consistent with those of Azoury and Miller. The end result is the same: x∗1(0) = 1 < X∗1 (0) = 2.

Opportunity Knocks
Azoury and Miller identified a class of inventory models for which the myth’s statement is
true. More generally, what are necessary and/or sufficient conditions for this?

DP Myth 12. When entering a parallel queueing system, it is optimal to join the shortest
queue.

Assume the arrivals into the system follow a Poisson process, with rate λ. Each new arrival
knows the queue lengths and must decide which queue to join to minimize expected time in
the system.

One reason this myth is not true is that “shortest” need not be the least wait time. For
example, in a supermarket checkout line people have different amounts of groceries. Let us
assume, however, that our queueing system serves indistinguishable customers. (Each customer
may be in one of several classes, requiring different service times, but the new arrival cannot
determine to which class each customer belongs.)

Counterexample. Whitt[33] provides the following: Let there be two queues with indepen-
dent service times. Let the common service-time distribution be given by the mass function:

Pr(t = τ) = 1− ε and Pr(t = 2) = ε,

where 0 ≤ τ � ε � 1. We may consider this to be a 2-class population, but unlike the
supermarket example, an arrival cannot determine the other customers’ class. An example
is a bank (with separate lines) such that a customer may have a very quick transaction,
like a deposit, or may require a lot of time, like complicated transfers.
Define the system state (s1, s2) = queue sizes. The shortest-queue rule is optimal for states:
(1) s1 = 0 or s2 = 0, and (2) |s1 − s2| ≤ 1. However, if s1, s2 > 0 and |s1 − s2| ≥ 2, Whitt
proves that it is optimal to join the longer queue for τ, ε sufficiently small.
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DP Myth 13. Given continuous control over arrival and service rates in a network of queues,
the optimal arrival rate into a queue decreases with its size.

Weber and Stidham[32] consider a network of m queues in which customers arrive at queue i
in a Poisson stream with rate λi and complete service at a rate µi. The completion may be
rejected, so the customer may remain at the same queue; otherwise, the customer may leave
the system or move to another queue.

The arrival and service rates are subject to continuous control over intervals, [λ, λ] and [µ, µ],
respectively. Service rates incur costs, ci(µi), and arrival rates bring rewards, ri(λi). The state
of the system is s = (s1, . . . , sm) ≥ 0, where si is the number of customers in queue i. There
is a holding (or waiting) cost,

∑m
i=1 hi(si).

Here is the DP recursion for minimizing the total expected cost:

fn+1(s) =
m∑
i=1

min
λi∈[λ

i
, λi]

µi∈[µ
i
, µi]

{
hi(si) + ci(µi)− ri(λi) + λifn(s+ ei) + µiE[fn(Ti(s, µi))]

}
,

where ei is the i th unit vector, and Ti(s, µi) is the new state resulting from completion events
at queue i:

Ti(s, µi) = s− ei if customer leaves system;
Ti(s, µi) = s− ei + ek if customer joins queue k;
Ti(s, µi) = s if customer remains in queue i.

The myth says that an optimal rate satisfies:

λ∗i (s+ ei) ≤ λ∗i (s).

Weber and Stidham[32] call this property transition-monotone, and they prove that it holds
under certain assumptions. The intuition is that it is less costly to slow down the entrance of
new arrivals if the queue grows.

Counterexample. Weber and Stidham[32] provide the following:
λ1 ∈ [0, 0.01], λ2 = 0, µ1 = 1, µ2 ∈ [0, 2],
c1 = c2 = 0, r1(λ1) = 0.944λ1,

h1(s1) =
{

0 if s1 = 0, 1, 2
∞ if s1 > 2,

h2(s2) =
{

0 if s2 = 0, 1, 2, 3, 4
∞ if s2 > 4,

An optimal solution has µ∗2(s) = 2 for all s, and

λ∗(s) =
{

0.01 if s ∈ S
0 otherwise,

where S = {(0, 0), (1, 0), (0, 1), (1, 1), (1, 2)}. This violates the myth with s = (0, 2) since

λ∗(1, 2) 6≤ λ∗(0, 2).
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DP Myth 14. In a 2-server queueing system, when the system is empty, it is optimal to have
the faster server take the first arrival.

Consider Poisson arrivals with rate λ, and they balk (that is, leave the system) if there is a
queue. The objective is to maximize the number of customers served.

Counterexample. Seth[27] provides the following: Servers 1 and 2 have mixed distributions:

Server 1: Pr[t = 0] = 1
2 , Pr[t ∼ exp(µ/2)] = 1

2 ;
Server 2: Pr[t ∼ exp(µ)] = 1

2 , Pr[t ∼ exp(µ/2)] = 1
2 .

Server 1’s time is stochastically less than Server 2, so the myth asserts that Server 1 will
take the next arrival in an empty system.
Let policy i have Server i take the first arrival in an empty system, for i = 1, 2. The states
are (i, j), where
i = 0 means Server 1 is free;
i = 2 means Server 1 is serving with time ∼ exp(µ/2);
j = 0 means Server 2 is free;
j = 1 means Server 2 is serving with time ∼ exp(µ);
j = 2 means Server 2 is serving with time ∼ exp(µ/2).

Ergodic Transition Probabilities

Policy 1 Policy 2

Seth solves the balance equations for each policy, from which he derives the proportion of
customers served. The difference in this proportion of policy 2 minus policy 1 is

D = (3ρ3 + 16ρ2 + 26ρ+ 12)ρ2/ab,

where ρ = λ
µ

a = 3ρ4 + 17ρ3 + 34ρ2 + 32ρ+ 12
b = 3ρ4 + 14ρ3 + 23ρ2 + 19ρ+ 6.

Since D > 0 for all λ, µ, this dispels the myth.
Seth gives some intuition why it is optimal for Server 2 to take the next arrival in an empty
system. Suppose λ is small, so that the probability of more than three customers arriving
during a busy period is very small. When three customers arrive, four different situations
could exist with equal probability, as follows:
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Server 1 Server 2 Optimal Policy
situation 1 0 exp(µ) Both equally good
situation 2 0 exp(µ/2) Both equally good
situation 3 exp(µ/2) exp(µ) Both equally good
situation 4 exp(µ/2) exp(µ/2) Send to Server 2

DP Background — Infinite Horizon
The infinite horizon DP has two basic models:

Discounted: Vβ(s, π) = lim
n→∞

V nβ (s, π) for β < 1

Average: A(s, π) = lim
n→∞

V n1 (s, π)
n

,

where
V nβ (s, π) =

∑n
t=1 β

t−1rt(st, πt(st))

π is a policy — that is, a decision rule with πt(st) ∈ Xt(st)

β is the discount factor ∈ [0, 1].

For the deterministic model, the state transition is given by st+1 = Tt(st, πt(st)). The stochas-
tic transition is given by:

Pr[st+1 = s|st, x] = qt(st, st+1;x) for x ∈ Xt(st).

The stochastic models use the expected returns in the objective, and the current state, st, is
known at the time of the decision, x = πt(st) ∈ Xt(st). This is a Markov decision process with
discrete time.

In words, Vβ is the total discounted return when starting in state s and using policy π; A is
the longterm, undiscounted average return. The former has an optimal solution under mild
assumptions (but see DP Myth 16); the latter is approached under certain circumstances by
letting β→ 1 from below.

The DP recursion for the discounted model is given by:

ft(s) = max
x∈Xt(s)

{
rt(s, x) + β

∑
s′ qt(s, s′;x)ft+1(s′)

}
.

The deterministic model is included with

qt(s, s′;x) =
{

1 if s′ = Tt(s, x);
0 otherwise.

If the maximum exists for each state, an optimal policy is to let

π∗t (s) ∈ argmax
x∈Xt(s)

{
rt(s, x) + β

∑
s′ qt(s, s′;x)ft+1(s′)

}
.

In a stationary DP, the recursion may be regarded as value iteration whose limiting function
is the solution to

f(s) = max
x∈X(s)

{
r(s, x) + β

∑
s′ q(s, s′;x)f(s′)

}
.
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The value function, f , is a fixed-point of the mapping, where β < 1 makes it a contractor.

Let V ∗β and A∗ denote suprema values of the discounted and average-return models, respec-
tively. The existence of optimal policies is not guaranteed, especially for the average-return
model, where the limit may not exist. There are several variations of the DP objective for π∗
to be an optimal policy:

B-opt: ∃β̄ ∈ (0, 1) : Vβ(s, π∗) ≥ V ∗β (s) ∀β ∈ (β̄, 1);
nearly optimal: lim

β→ 1−

(
Vβ(s, π∗)− V ∗β (s)

)
= 0;

1-optimal: lim inf
β→ 1−

(
Vβ(s, π∗)− Vβ(s, π)

)
≥ 0 ∀π;

discount ε-optimal: Vβ(s, π∗) ≥ V ∗β (s)− ε for ε > 0;
average ε-optimal: A(s, π∗) ≥ A∗(s)− ε for ε > 0;

liminf average optimal: lim inf
n→∞

1
nV

n
1 (s, π∗) ≥ lim inf

n→∞
1
nV

n
1 (s, π) ∀π;

limsup average optimal: lim sup
n→∞

1
nV

n
1 (s, π∗) ≥ lim sup

n→∞
1
nV

n
1 (s, π) ∀π;

average-overtaking: lim inf
N→∞

1
N

∑N
n=1

(
V n1 (s, π∗)− V n1 (s, π)

)
≥ 0 ∀π.

Each defining condition applies to all states, s. (See Lippman[18] and Flynn[11] for succinct
introductions and how the objectives relate to each other.) Also see LP Myth 9 (p. 8).

The remaining DP Myths pertain to infinite horizon, stationary DPs.

DP Myth 15. If there is a nearly optimal solution to a discounted DP with a finite number
of states and decisions, it is an optimal policy.

Blackwell[4] provides the following:
Counterexample. The state space is S = {1, 2}, and the decision sets are X(s) = {1, 2} for

each s ∈ S. The return functions are r(1, x) = x and r(2, x) = 0. The state transition
probabilities are: q(1, 1; 1) = q(1, 2; 1) = 1

2 , q(1, 2; 2) = 1, and q(2, 2;x) = 1.

State transitions for x = 1 State transitions for x = 2

Let πx be any policy for which πx(1) = x for x = 1, 2 Then, starting in state 1:

Vβ(π1) = 1 + 1
2β + 1

4β
2 + · · · = 2

2− β
Vβ(π2) = 2.

Thus, π2 is an optimal policy for each β, and limβ→ 1− Vβ(π1) = 2. So, π1 is nearly optimal
but not optimal for any β < 1.

Also see Hordijk and Spieksma[15].
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DP Myth 16. For the discounted-return DP, there exists an ε-optimal policy for all ε > 0.

Counterexample. Blackwell[5] provides the following. Let the state space be the unit inter-
val: S = [0, 1]. For each s ∈ S, the decision set is X(s) = [0, 1], and the state remains
unchanged: T (s, x) = s for all s ∈ S, x ∈ X(s). Let B be a Borel subset of [0, 1]2, and let
D be the projection of B on S. Choose B such that D is not a Borel set, and define the
return function:

r(s, x) =
{

1 if (s, x) ∈ B;
0 otherwise.

An optimal policy, π∗, is such that (s, π∗(s)) ∈ B, so the optimal value is Vβ(s, π∗) = 1
1−β .

For any other policy, π, there exists s ∈ D such that r(s, π(s)) = 0, so

Vβ(s, π) ≤ β + β2 + · · · = β

1− β .

Hence, there is no ε-optimal policy for 0 < ε < 1.

DP Myth 17. There exists a stationary policy that is B-opt.

While this is true for finite decision sets and state space, it fails for non-finite decision sets.
Maitra[19] proved that finiteness is not necessary if the objective is the discounted model —
that is, Vβ is well defined for any particular β ∈ [0, 1). He provided the following for this myth:

Counterexample. Let the state space be {1, 2 . . . }, and let the decision set be binary: X =
{0, 1}, independent of the state. The returns are r(s, 0) = cs and r(s, 1) = 0; and, the state
transitions are T (s, 0) = s and T (s, 1) = s+ 1. Choose cs > 0 such that {cs} ↑ c <∞ (for
example, cs = c− 1

s ).
Note that an advantage of choosing decision 0 is the positive immediate return, and the
advantage of choosing decision 1 is the transition to the next state, which has a greater
immediate return for the next decision. To illustrate, suppose πx(s) = x for all s. Then,
Vβ(1, π1) = 0 and

Vβ(1, π0) =
∞∑
t=1

βt−1c1 = c1

1− β .

More generally, suppose π(s) = 0 for all s ∈ S 6= ∅ and π(s) = 1 for s 6∈ S. Then, with
S = {s1, s2, . . . },

Vβ(1, π) =
∞∑
t=1

βt−1cs1 = 1− βs1

1− β cs1 .

Here is an optimal (stationary) policy for any fixed β:

π(s) =
{

0 if βkcs+k < cs for all k ≥ 1;
1 otherwise.

This defines s1 in the above equation for Vβ(1, π) as

s1 = min{s : βkcs+k < cs for all k ≥ 1}.
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There is thus an optimal policy for each fixed β ∈ (0, 1). However, there is no B-opt policy,
as Maitra proves by contradiction. Suppose π∗ is B-opt. He first proves

lim
β→ 1−

(1− β)Vβ(1, π∗) = c.

An implication of this equation is that π∗(s) selects decision 0 a finite number of times
when in state s in order to advance to the greater immediate returns that converge to c.
Maitra constructs another policy, π′, that contradicts the optimality of π∗ by showing
Vβ(1, π′) > Vβ(1, π∗) for all β sufficiently close to 1.

Maitra[20] later provided the following:

Counterexample. Let there be just one state, and let the decision set at each time period
be given by X = {1, 2, . . . }. Let the return function be r(x) = 1− 1

x , so there is no optimal
policy.

Thus, non-finite state or decision sets can result in there being no B-opt policy.

DP Myth 18. If the average-return DP has an optimal policy, there exists a stationary policy
that is optimal.

Fisher and Ross[8] provide the following:

Counterexample. Let S = {0, 1, 1′, 2, 2′, 3, 3′, . . . , }, X(s) = {1, 2} for s = 1, 2, 3 . . . , and
X(s) = {1} for s = 0, 1′, 2′, 3′, . . . . The return values are r(0, x) = −1 and r(s, x) = 0 for
s 6= 0. The state transition probabilities are:

For s = i > 0: q(0, i; 1) = q(0, i′; 1) = 3
2 ( 1

4 )i

For s = i: q(i, 0; 1) = q(i′, 0, 1) = ( 1
2 )i = 1− q(i, i′; 1) = 1− q(i′, i′; 1)

For s = i: q(i, 0; 2) = q(i, i+ 1; 2) = 1
2

State transitions for x = 1 State transitions for x = 2

Let Mij(π) denote the expected number of periods to reach state j, starting in state i and
following policy π. For example, suppose π always selects decision 2. Then,

M00(π) = 1; for s 6= 0: M0s(π) =∞ and Ms0(π) =
∑∞
j=1 j( 1

2 )j = 2.
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Let πm be the policy that selects decision 2 at states 0 < i < m and decision 1 otherwise.
Then,

M00(πm) = 1 +
∞∑
i=1

3
2 ( 1

4 )iMi0(πm) +
∞∑
i=1

3
2 ( 1

4 )i 2i.

Fisher and Ross derive the fact that M00(πm) < 5 for all m, and limm→∞M00(πm) = 5.
Let π be any stationary policy, and let pi = Pr(x = 1|s = i) define a randomized policy.
Then,

M00(π; p) = 1 +
∞∑
j=1

3
2 ( 1

4 )jMj0(πm; p) +
∞∑
j=1

3
2 ( 1

4 )j 2j .

Mj0(π; p) =
∞∑
m=j

pm

m−1∏
k=j

(1− pk)Mj0(πm; p) + 2
∞∏
k=j

(1− pk) < (2 + 2j).

Hence,M00(π; p) < 5 for all stationary policies randomized by p. They proceed to construct
the following non-stationary policy and prove that it has the optimal value of 5 for some
{Ni}:

πt(s) =



π1(s) for 0 < t ≤ N1
π2(s) for N1 < t ≤ N1 +N2
...
πm(s) for

∑m−1
i=1 Ni < t ≤

∑m
i=1 Ni

...

Ross[25] provides the theory needed to establish this, with application to the replacement
process.

DP Myth 19. There exists an average ε-optimal policy for ε > 0 that is optimal for the
discounted-return model for β sufficiently close to 1.

The intuition is that lim infβ→ 1− Vβ(s, π) = A(s, π), but Ross[25] provides the following:

Counterexample. Let S = {(i, j) : 0 ≤ j ≤ i, i ≥ 1}∪ {∞} and X(s) = {1, 2} for s = (i, 0),
X(s) = {1} for s = (i, j > 0),∞. The state transitions are deterministic:

T ((i, 0), 1) = (i+ 1, 0)
T ((i, 0), 2) = (i, 1)
T ((i, j), 1) = (i, j + 1) for 0 < j < i

T ((i, i), 1) =∞ = T (∞, 1).
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Starting at state (i, 0), one can move upward (x = 1) to some point, say (i + h, 0), then
go right (x = 2). There is no choice from that point; after reaching the 45◦ line (where
j = i+ h), one jumps to ∞ and stays there.
The immediate returns are r(s, x) = 0, except r((i, 0), x) = 2 and r(∞, x) = 1. Suppose
we start at state (1, 0). Letting π1 be the policy that always selects decision 1, there is no
right turn, so the average return is 2. Otherwise, the average return is 1 (reaching ∞ and
staying there forever).
Letting π be the policy that selects action 2 at state (n, 0) and decision 1 otherwise, we
have:

Vβ((1, 0), π) =
n−1∑
k=0

βk + 2
∞∑

k=2n
βk = 1− βn + 2β2n

1− β

<
1

1− β for n sufficiently large

= Vβ((1, 0), π1).

Hence, for β ∈ (0, 1), Vβ((1, 0), π1) 6= V ∗β ((1, 0)). This implies that the discounted-return
model optimum does not approach the optimal average return, so it cannot become average
ε-optimal.

DP Myth 20. The successive value sequence converges to the infinite-horizon solution.

The value sequence is {ft(s)}t=1,2,... for each s ∈ S. The myth asserts that this converges to
the infinite-horizon solution, as t→∞.

Counterexample. Kreps and Porteus[17] provide the following. Let S = {0, 1, 2 . . . } ∪ {∞}
and only one decision at each state, except X(∞) = {1, 2, . . . }. All returns are zero, except
r(x, 1) = −1 (x is the only decision at s = 1).
The state transitions are deterministic, shown
on the right. State 0 is absorbing, so the system
eventually reaches it with a return of −1. Thus,
ft(s) = −1 for s > 0, but the infinite-horizon
model never has to pay that cost, so f∞(s) = 0
for all s ∈ S.

DP Myth 21. If the optimal average-return is finite, there is an ε-optimal stationary policy
for any ε > 0.

Ross[26] provides the following:

Counterexample. Let the state space be S = {1, 1′, 2, 2′, . . . , i, i′, . . . ,∞}. For each i ∈ S,
the decision set is binary: X(i) = {0, 1}. For each i′ ∈ S, the decision set is a singleton:
X(i′) = {0}. The state-transition probabilities are:

For s = i: q(i, i+ 1; 0) = 1, q(i, i′; 1) = ai = 1− q(i,∞; 1),
For s = i′: q(i′, (i− 1)′; 0) = 1 for i ≥ 2, q(1′, 1; 0) = 1,
For s =∞: q(∞;∞, s) = 1 for all s ∈ S,
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where ai satisfy: 0 < ai < 1 and
∏∞
i=1 ai = 3

4 .

State transitions for x = 0 State transitions for x = 1

The returns are r(i, x) = 2 and r(i′, x) = 0 for all i, i′ ∈ S and all x.
Let the initial state be s = 1. Then, every stationary policy has a return of 2 in all but
a finite number of time periods. This implies (by the bounded convergence theorem) that
the average expected return is 2.
Let π be a (non-stationary) policy such that:

π1(1) = 1
πt(1′) = 0 for t = 2, . . . , T

πT+1(1′) = 1.

The average return equals:

2 with probability 1−
∏∞
i=1 ai = 1

4

1 with probability
∏∞
i=1 ai = 3

4 .

Hence, the expected average return is 1
2 + 3

4 = 5
4 , so there is no ε-optimal stationary policy

for ε < 3
4 .

DP Myth 22. If a policy is B-opt, it optimizes the average return.

Flynn[9] proved this for finite state spaces and provides the following for a non-finite state
space:

Counterexample. Let {sj}∞j=1 be a real sequence such that

s∗
def= lim inf

β→ 1−
(1− β)

∞∑
j=1

βj−1sj > lim inf
n→∞

∑n
j=1 sj

n

def= s∗.

(Flynn establishes existence by an earlier theorem.) Let the state space be {0, s1, s2, . . . }.
The decision sets are binary, independent of the state: X(s) = {0, 1} for all s. The state
transition functions are deterministic: T (sj , x) = sj+1, T (0, 0) = 0, and T (0, 1) = s1. The
immediate returns are independent of the decision: r(sj , x) = sj and r(0, x) = 1

3 (s∗+ 2s∗).
Let πx denote a policy that always selects x ∈ {0, 1}. We have Vβ(s, π1) = Vβ(s, π) for
s 6= 0. For π(0) = 0,

(1− β)Vβ(0, π) = 1
3 (s∗ + 2s∗) < s∗ = (1− β)

∞∑
j=1

βj−1sj = (1− β)Vβ(0, π1).
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Hence, Vβ(0, π) < Vβ(0, π1), so π1 is B-opt. However, we also have

A(0, π0) = 1
3 (s∗ + 2s∗) > s∗ = A(0, π1),

so π1 does not maximize the average return, starting in state 0.

Also see Flynn[10]. added

DP Myth 23. If a stationary policy is B-opt, it is average-overtaking.

This is true for finite state spaces, and Flynn[11] provides the following:

Counterexample. Let S = {0, 1, . . . ,∞} and X(s) = {0, 1} for all s ∈ S. State transitions
are stochastic only for s = 0 and x = 0: q(0, 0; 0) = q(∞, 0; 0) = 1

2 . Otherwise, the
transition is deterministic: T (0, 1) = 1 and T (s, x) = s + 1 for all s > 0, x ∈ X(s) (note:
T (∞, x) =∞).

State transitions for x = 0 State transitions for x = 1

Flynn establishes the existence of a sequence {aj}∞j=1 that satisfies:

lim inf
N→∞

1
N

N∑
n=1

n∑
j=1

aj = −1 (DP.13)

lim inf
β→ 1−

∞∑
j=1

βj−1aj = lim sup
N→∞

1
N

N∑
n=1

n∑
j=1

aj = 0 (DP.14)

Using this sequence, the returns are defined as: r(s, x) = as+1 for s > 0; r(0, 1) = a1,
r(0, 0) = − 1

4 , and r(∞, x) = 0.
Let πx denote the policy that always selects x. A B-opt policy is π1 because V ∗β (s) =
Vβ(s, π1) for all s. (For s = 0, Vβ(0, π1) = 0 from (DP.14), whereas if π∗(0) = 0, Vβ(0, π∗) =
− 1/4
1−β .) However, π1 is not average-overtaking because the defining inequality fails for s = 0:

lim inf
N→∞

1
N

N∑
n=1

n∑
j=1

(
V n1 (0, π1)− V n1 (0, π0)

)
= lim inf

N→∞

1
N

N∑
n=1

n∑
j=1

aj + 1
2 = − 1

2 .

The last step uses (DP.13).

DP Myth 24. Every stationary, 1-optimal policy is average-overtaking.

Flynn[11] establishes this for finite state spaces and provides the following:

Counterexample. Let S = {0, 1, 2, . . . } andX(s) = {0, 1} for all s ∈ S. The state transitions
are deterministic: T (0, 0) = 0, T (0, 1) = 1, T (s, x) = s+ 1 for s > 0.
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State transitions for x = 0 State transitions for x = 1

The immediate returns are r(0, 0) = 0, r(0, 1) = a1, and r(s, x) = as+1 for s > 0.
Let πx denote the policy that selects x each time. Flynn proves that π0 is both 1-optimal
and average-overtaking, whereas π1 is 1-optimal but not average-overtaking.
For s > 0, Vβ(s, π0) = Vβ(s, π1) = Vβ(s, π)∀π, so the defining inequality for 1-optimal
is valid. Now consider s = 0. If π∗(0) = 0, Vβ(s, π0) = Vβ(s, π),∀π and π0 is optimal.
Otherwise, applying (DP.14), we have:

lim
β→ 1−

(
Vβ(0, π0)− Vβ(0, π)

)
= − lim

β→ 1−

∞∑
j=1

βj−1aj = 0.

Hence, π0 is 1-optimal. Similarly, if π∗(0) = 1, Vβ(s, π1) = Vβ(s, π) and π1 is optimal.
Otherwise, we have:

lim
β→ 1−

(
Vβ(0, π1)− Vβ(0, π)

)
= lim
β→ 1−

∞∑
j=1

βj−1aj = 0.

Hence, π1 is 1-optimal.
For any policy, π, V n1 (s, π) = V n1 (s, π0) = V n1 (s, π1) for s > 0. Consider s = 0. If π(0) = 0,
π1 is not average-overtaking because (DP.13) yields:

lim inf
N→∞

1
N

N∑
n=1

(
V n1 (0, π1)− V n1 (0, π)

)
= −1.

Whereas, if π(0) = 1,

lim inf
N→∞

1
N

N∑
n=1

(
V n1 (0, π0)− V n1 (0, π)

)
= 1,

so π0 is average-overtaking.

DP Myth 25. If a policy is both B-opt and average-overtaking, it is liminf average optimal.

The assertion is true for finite state spaces, and Flynn[11] provides the following:

Counterexample. Let the state space, decision sets, and state transition functions be the
same as in DP Myth 24, but with returns: r(0, x) = 0 and r(s, x) = vs for s > 0, where
Flynn establishes the existence of {vj}∞j=1 that satisfies:

lim
N→∞

1
N

N∑
n=1

n∑
j=1

vj =∞, lim inf
n→∞

1
n

n∑
j=1

vj < 0. (DP.15)
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Let πx denote the policy that always selects decision x. π1 is average-overtaking because
∀π:

s > 0 → V n1 (s, π1) = V n1 (s, π)
s = 0, π(0) = 1 → V n1 (0, π1) = V n1 (0, π)

s = 0, π(0) = 0 → V n1 (0, π) = 0 and V n1 (0, π1) =
n∑
j=1

vj > 0 for n sufficiently large.

Further, π1 is B-opt because ∀π:

lim inf
N→∞

1
N

N∑
n=1

V n1 (s, π) ≤ lim inf
β→ 1−

Vβ(s, π) ≤ lim sup
β→ 1−

Vβ(s, π) ≤ lim sup
N→∞

1
N

N∑
n=1

V n1 (s, π).

However, π1 is not liminf average optimal because (DP.15) yields:

lim inf
n→∞

1
n
V n1 (0, π1) = lim inf

n→∞

1
n

n∑
j=1

vj < 0 = lim inf
n→∞

1
n
V n1 (0, π0).

DP Myth 26. If a policy is both B-opt and average-overtaking, it is limsup average optimal.

The assertion is true for finite state spaces, and Flynn[11] provides the following:

Counterexample. Let the state space, decision sets, and state transition functions be the
same as in DP Myth 25, but with returns: r(0, x) = 0 and r(s, x) = −vs for s > 0,
satisfying (DP.15). Using a similar proof, π0 is both B-opt and average-overtaking, but it
is not limsup average optimal because:

lim sup
n→∞

1
n
V n1 (0, π0) = 0 < − lim inf

n→∞

1
n

n∑
j=1

vj = lim sup
n→∞

1
n

n∑
j=1
−vj = lim sup

n→∞

1
n
V n1 (0, π1).

DP Myth 27. If a policy is B-opt among stationary policies, it optimizes the average return
among stationary policies.

Flynn[11] establishes this for finite state spaces and provides the following:

Counterexample. Let S = {0, 1, . . . ,∞} and X(s) = {0, 1} for all s ∈ S. State transitions
are: q(∞,∞;x) = q(0, 0; 1) = 1, q(0, 1; 1) = q(0,∞; 1) = 1

2 , and q(s, s+1;x) = q(s,∞;x) =
1
2 for s > 0.

State transitions for x = 0 State transitions for x = 1
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Letting {vj} satisfy (DP.15), define the returns independent of the decisions: r(0, x) =
r(∞, x) = 0 and r(s, x) = −2svs for s > 0 (s 6=∞).
Under any stationary policy, the system is absorbed in state ∞ with probability 1. Fol-
lowing the same arguments as in the counterexample to DP Myth 25, Flynn proves π0 is
B-opt, but not limsup average optimal.

DP Myth 28. If a policy is average-overtaking among stationary policies, it optimizes the
average return among stationary policies.

Flynn[11] establishes this for finite state spaces and provides the following:
Counterexample. Let S = {0, 1, . . . ,∞} and X(s) = {0, 1} for all s ∈ S. State transi-

tion functions are as in DP Myth 27, but the immediate returns are r(s, x) = 2s+1as+1,
r(∞, x) = 0, r(0, 0) = − 1

4 , and r(0, 1) = 2a1, where {aj} satisfies (DP.13). Using the same
arguments as in DP Myth 23, π1 is B-opt, but not average-overtaking.

DP Myth 29. We can approximate an infinite horizon Markov decision process with a suffi-
ciently long, finite horizon.

Hinderer[14] first raised this issue for both discounted and average return models. Flynn[12]
provides the following:
Counterexample. Let S = {0, 0′, 1, 1′, 2, 2′, . . . } and X(s) = {0, 1, 2} for all s ∈ S. The state

transitions are deterministic: T (s, 0) = 0, T (s, 1) = s + 1, T (s, 2) = s′, T (s′, x) = (s − 1)′
for s = 1, 2, . . . .

The immediate returns are r(0, x), r(s, x) = −1 for s = 0′, 1, 2, . . . , and r(s, x) = 3 for
s = 1′, 2′, . . .
Let π0 be the policy of always selecting x = 0, and note that the infinite horizon solution
is π0 with A∗(s) = 0 for all s. Let xN be an optimal policy for N time periods, and let
m =

⌊
N
2
⌋
. Then,

xN (s) =
{

1 if s ≤ m;
2 if s > m.

So, starting in state 1, we have V N1 (1, xN ) = N if N is even, and V N1 (1, xN ) = N + 2 if N
is odd.
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Optimal State and Return Sequences for N -period Horizon

Consider xN as a finite approximation for the infinite horizon. As N becomes large,
{V N1 (1, xN ) − V N1 (1, π0)} ↑ ∞, so xN is a poor approximation. From the other view, π0

becomes increasingly less desirable as an approximation to the N -horizon DP as N→∞.
Moreover, the average return for the N -horizon approaches 1, whereas the average return
for the infinite horizon DP is 0.

DP Myth 30. A discounted-return stationary DP with finite decision space for each state
has a pure, stationary policy that is optimal.

Hordijk and Tijms[16] provide the following:

Counterexample. Let the state space be given by the denumerable set, S = {1, 1′, 2, 2′, . . . }.

Let the decision sets be X(s) = {1, 2} for s = 1, 2, . . .
and X(s) = {1} for s = 1′, 2′, . . . Let the state tran-
sitions be T (i, 1) = i + 1 and T (i, 2) = T (i′, 1) = i′

for i = 1, 2, . . . The immediate returns are r(s, 1) = 0
for all s and r(i, 2) = β−i

(
1− 1

i

)
for i = 1, 2, . . .

State Transitions
There are two pure, stationary policies:

π1(s) = 1 and π1(s ′) = 1
π2(s) = 2 and π2(s ′) = 1

Then,
Vβ(s, π1) = 0 for all s
Vβ(i, π2) = β−i

(
1− 1

i

)
and Vβ(i ′, π2) = 0 for i = 1, 2, . . .

π2 is optimal among pure, stationary policies, and Vβ(i, π2) < β−i for all i = 1, 2 . . .
Now consider the following randomized policy: Pi(t) = probability that πt(i) = 1 when the
system is in state i at time t. Suppose Pi(t) < 1 for at least one t. Then,

Vβ(i, π) =
∞∑
t=0

βt(1− Pi(t))β−(i+t)
t−1∏
n=0

Pi(n)
(

1− 1
i+ t

)
.

This yields

Vβ(i, π) = β−i
∞∑
t=0

βt(1− Pi(t))
t−1∏
n=0

Pi(n)
(

1− 1
i+ t

)
.

Using the identity
∞∑
t=0

βt(1− Pi(t))
t−1∏
n=0

Pi(n) = 1−
∞∏
t=0

Pi(t),

we obtain
Vβ(i, π) < β−i.

Consider the policy with

π(i) = 1 for i = 1, . . . ,m− 1 and π(i) = 2 for i = m,m+ 1, . . .
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Then, Vβ(i, π) = β−i
(
1− 1

m

)
for all i ≥ 1. Letting m→∞, we see that

sup
π
Vβ(i, π) = β−i.

Thus, the supremum cannot be achieved (finitely), so there is no optimal policy.

DP Myth 31. There exists an optimal policy that is stationary for the dynamic portfolio
problem of minimizing variance subject to an expected return requirement.

This is known as Tobin’s theorem, one of the first results in the theory of optimal multi-
period portfolio selection. The myth was accepted as true by Samuelson, among other leading
economists, until Stevens[31] provided the following:

Counterexample. Let there be two periods with expected returns denoted by E1, E2. Fur-
ther, let the return requirement be 4. Tobin’s problem is thus:

min
(
σ2

1 + (1 + E1)2) (σ2
2 + (1 + E2)2) : (1 + E1)(1 + E2) = 4.

Consistent with Tobin’s development, Stevens relates variance with expected return as:
σ2
i = E2

i for i = 1, 2. The objective thus becomes:

min
(
E2

1 + (1 + E1)2) (E2
2 + (1 + E2)2) : (1 + E1)(1 + E2) = 4.

Among three solutions to the first-order conditions, Tobin’s theorem chooses E1 = E2 = 1,
with an objective value of 25. A better solution is

E1 = 1 1
4 + 1

8

√
68 and E2 = 1 1

4 − 1
8

√
68.

This has an objective value of 24.5.

Stevens suggested that Tobin may have been thinking that the functional symmetry and some
form of convexity are sufficient to conclude E1 = E2. (See [13] for elaboration.)

DP Myth 32. Denardo’s policy improvement algorithm computes a 1-optimal policy.

Counterexample. O’Sullivan[23, Appendix A] provides the following: Let S = {1, 2, 3, 4},X(1) =
X(2) = {a, b}, and X(3) = X(4) = {a}. The state transitions are deterministic:

T (1, a) = 2 r(1, a) = −2
T (1, b) = 3 r(1, b) = −3
T (2, a) = 1 r(2, a) = 2
T (2, b) = 4 r(2, b) = 1
T (3, a) = 4 r(3, a) = 4
T (4, a) = 3 r(4, a) = −4

The only 1-optimal policy is πa = (a, a, a, a) because

lim inf
β→ 1−

(
Vβ(s, πa)− Vβ(s, π)

)
=
{ 2

1+β − 1 > 0 if π(s) = b and s = 1, 2

0 otherwise.
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Starting with π0 = (b, b, a, a), the algorithm computes a solution to Qπ0v1 = v0
π0 , where

Qπ0 = P (π0)− I (P (π0) is the state transition probability matrix using policy π0), and

v0
π0 = lim

β→ 1−
Vβ(•, π0) = lim

β→ 1−


−3 + 4β

1+β

1 + 4β
1+β

4β
1+β

− 4β
1+β

 =


−1

3

2

−2

 .

Such a solution is given by v1 = (1, −1, 0, 2)T:
−1 0 1 0

0 −1 0 1
0 0 −1 1
0 0 1 −1




1
−1

0
2

 =


−1

3
2
−2

 .

Then, π1 is the solution to a maximum-reward-rate problem among all policies π with
Qπv

1 = v0
π. However, only π0 has Qπ0v1 = v0

π0 , so π1 = π0. Finally, the algorithm seeks a
1-optimal policy π2 that is transient on the same states as π1(= π0). Thus, π2 is transient
on states 1 and 2 so π2 6= πa = (a, a, a, a) as this policy is recurrent on states 1 and 2.
Thus, π2 is not 1-optimal.
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Nonlinear Programming
A nonlinear program (NLP) has the general form:

max f(x) : x ∈ X, g(x) ≤ 0, h(x) = 0,

where ∅ 6= X ⊆ �n, f : X→�, g : X→�m, h : X→�M . This is the most general form with
no restrictions on the domain (X) or the nature of the functions, except to have at least one
of the functions be nonlinear. Historically, the domain is a simple convex set, like all of �n
or �n+. If the functions are differentiable, methods of calculus are used to establish optimality
conditions and provide a foundation for algorithm design.

We refer to some special NLPs:

Convex (CP). X is closed and convex, f is concave, g is convex, and h is affine.

Quadratic (QP). max xTQx+ cx : Ax ≤ b.
Typically, Q is assumed to be symmetric, but this is no restriction because the same
quadratic form results upon replacing Q with 1

2 (Q+QT).

NLP Myth 1. If f has continuous n th-order derivatives, local behavior of f can be approxi-
mated by Taylor’s series:

f(x+ th) = f(x) + t∇f(x)h+ 1
2 t

2hT∇2f(x)h+ . . . ,

where h is a vector with ||h|| = 1, t is a scalar, ∇f(x) is the gradient of f , and ∇2f(x) is the
hessian of f .

The reason this is not correct is that, although Taylor’s series might converge under the stated
assumptions, it need not be to the correct value.

Counterexample. Let f(x) = e−
1
x2 for x 6= 0, and f(0) = 0 (x is a scalar). It can be shown

that f is infinitely differentiable everywhere. At x = 0, the n th derivative is 0 for all n.
Thus, the Taylor series converges to 0, which gives the approximation, f(t) = 0 (with
h = 1) for all t. This is incorrect for t 6= 0.

This myth is used all too often in textbooks. The correct assumption is that f is analytic.
Then, by definition, the Taylor’s series does converge to the correct value of the function, so
it can be used for approximation when proving theorems — viz., that necessary conditions for
x to be an unconstrained minimum are: ∇f(x) = 0 and hT∇2f(x)h ≥ 0 for all h.

NLP Myth 2. Given differentiable functions, an optimal point must satisfy the Lagrange
Multiplier Rule.

We are given
NLP: max f(x) : x ∈ �n, g(x) ≤ 0, h(x) = 0,

where f, g, h are differentiable functions on �n. For just equality constraints (g vacuous), the
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Lagrange Multiplier Rule (LMR) states: x∗ is optimal only if there exists λ such that:

∇f(x∗)− λ∇h(x∗) = 0.

Counterexample. Consider max −x : x3 − y2 = 0. The optimum is at (x∗, y∗) = (0, 0).
The LMR requires −1− λ 0 = 0 for some λ, which is impossible.

cusp: h(x, y) = x3 − y2

The LMR for equality constraints is valid with the constraint qualification: ∇h(x∗) has full
row rank. This is what Lagrange assumed, using the Implicit Function Theorem to prove the
necessity of the LMR. (Affine functions need no constraint qualification.)

One extension of the LMR to include inequality constraints is simple: there exists λ, µ such
that:

µ ≥ 0, µi > 0→ gi(x∗) = 0 (NLP.16)
∇f(x∗)− µ∇g(x∗)− λ∇h(x∗) = 0 (NLP.17)

The extended Lagrange constraint qualification is simply

rank
([
∇gA(x∗)
∇h(x∗)

])
= |A|+M,

where A is the set of active constraints among the inequalities — that is, A = {i : gi(x∗) = 0}
— and M is the number of equality constraints.

The classical extension and deeper meaning into saddlepoint equivalence by Kuhn and Tucker[39]
gave a weaker constraint qualification, but it is violated by the following:

Counterexample. max x : x ≥ 0, y − (1− x)3 ≤ 0, −y ≤ 0. The solution is at (1, 0). The
LMR requires (µ1, µ2) ≥ 0 to satisfy:

1− µ1 3(1− x)2 = 0
−µ1 + µ2 = 0

The first equation is impossible at (1, 0).

Here is another counterexample with g convex: max x : x2 ≤ 0. The problem here is that the
strict interior is empty — that is, {x : g(x) < 0} = ∅.

Since linear constraints require no constraint qualification for the LMR to be valid, another
myth was given by Mond[49]:

The LMR is valid if the constraints are linear, except one is convex with a non-
empty strict interior.

Counterexample. Mond provides the following:

min x1 : x1 ≥ 0, x2 ≥ 1, x1 + x3 ≥ 1, x2
2 + x2

3 ≤ 1.
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We have {x : x2
2 +x2

3 < 1} 6= ∅, so the constraint qualification holds. However, the optimal
solution is x = (1, 1, 0), and the LMR requires that there exist λ ≥ 0 such that λ1 = 0 and

1− λ3 = 0, −λ2 + 2 = 0, −λ3 + 0λ4 = 0.

The first and last equations are inconsistent, so the LMR fails.
The true statement is that {x : Ax ≥ b, g(x) < 0} 6= ∅ — that is, the strict interior is
defined over the entire feasible region.

NLP Myth 3. A point that satisfies the Lagrange multiplier necessary conditions is a local
optimum.

Most people know this is a myth because the Lagrange (a.k.a., Kuhn-Tucker-Karush) con-
ditions hold at stationary points that are not minima or maxima (for example, at a saddle
point). This is included here, however, because it appears too often in textbooks and even
some research articles. Those not expert in mathematical programming are told that an al-
gorithm converges to a local optimum when, in fact, it converges to a point that satisfies the
Lagrange multiplier conditions. (Methods of descent can rule out converging to a “pessimal”
solution — that is, to a max when seeking a min — if it moves from its initial point.)

Counterexample. min x2 − y2 : −1 <= x, y <= 1. A Lagrange point is at (x, y) = (0, 0)
with all four multipliers = 0, but this is not a local min (or max) of the NLP. It is a
saddlepoint.

NLP Myth 4. Suppose f is analytic and x is a minimum of f . Then, ∇f(x) = 0, and if
hT∇2f(x)h = 0 for all h, it is necessary that all terms of the third derivative shall vanish. In
that case, if the fourth-order term is positive, the point is a minimum.

This is a classical error, made by the great Lagrange. A complete discussion is given by
Hancock[34]. (Qi[59] provides a qualification that makes an “extended Lagrange claim” valid.)

The proposition is a natural extension of the (correct) result for one variable: the first non-
vanishing derivative must be of even order; and, it is positive for a minimum and negative for
a maximum. For two variables, however, we have a problem with the ambiguous case.

For notational convenience, translate the solution to the origin, and suppose f(0) = 0. Then,
Taylor’s expansion is:

f(h, k) = 1
2 (Ah2 + 2Bhk + Ck2) + 3rd-order terms,

where the quadratic form coefficients (A,B,C) are the associated second partial derivatives
of f , evaluated at (0,0). When B2 − 4AC > 0, the origin is a proper (local) minimum;
when B2 − 4AC < 0, the origin is a proper (local) maximum. The ambiguous case, when
B2 − 4AC = 0, is at issue. Here is where Lagrange claimed the 3rd-order term must vanish,
and that the sign of the 4th-order term (if it does not vanish) can then determine whether the
point is a (local) minimum or a maximum. The following is a special case of a counterexample
found by Peano.
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Counterexample. f(x, y) = (y − x2)(y − 2x2). We have first derivatives: fx = −6xy + 8x3

and fy = 2y − 3x2. These vanish at (0, 0), so we proceed to the second derivatives:

∇2f(x, y) =
[
−6y + 24x2 −6x
−6x 2

]
=
[

0 0
0 2

]
at (0, 0).

This is the ambiguous case, where the hessian is positive semi-definite at the origin. Let
the change in the y-direction be zero, and let the change in x be t, so the quadratic form
is (t, 0)∇2f(0)(t, 0)T = 0 for all t. We proceed to third derivatives, but since we maintain
no change in the y-direction, we need to compute derivatives of only x:

fxxx = 48x and fxxxx = 48,

so f(t, 0) = 48t4 > 0 for all t. According to the myth, this implies f achieves a minimum
at (0, 0); however, consider y = 3/2 x

2. Along this parabola, f(x, y) = − 1/4 x
4, which is

negative for x 6= 0. Thus, (0, 0) is not a local minimum of f .

NLP Myth 5. Given min{f(x, y) = g(x) + h(y) : ay = g(x)}, we can equivalently solve
min{ay + h(y)}.

Counterexample. The following is given by Bloom[6]. Determine the shortest distance from
the point (0, 5) to the parabola defined by 16y = x2. Using the square distance as the
objective function, our problem is:

min x2 + (y − 5)2 : 16y = x2.

Substituting x2, the unconstrained “equivalent” is given by:

min 16y + (y − 5)2.

The only critical point (where f ′ = 0) is at y = −3. However, this produces an imaginary
value of x, so the minimum does not exist. The problem is that we cannot simply replace
x2 with 16y; we must divide the problem into the cases: x ≥ 0 and x ≤ 0.
The Lagrange Multiplier rule does not run into any problem. The Lagrange conditions for
the original problem are:

2x+ λ2x = 0, 2(y − 5)− 16λ = 0, and 16y = x2.

With x = 0 we obtain y = 0⇒λ = − 5
8 . With x 6= 0, we obtain λ = −1⇒ y = −3⇒

contradiction. Hence, the minimum is at (0, 0).

NLP Myth 6. A smooth surface with one critical point that is a local, but not a global,
minimum must have a second critical point.

Let the surface be given by (x, y, f(x, y)) for x, y ∈ �. Define “smooth” as f is infinitely
differentiable. The intuition stems from the fact that the statement is true in one variable.

Counterexample. Ash and Sexton[4] provide the following:

f(x, y) = − 1
1 + x2 + (2y2 − y4)

(
ex + 1

1 + x2

)
.
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The origin is a local, but not a global, minimum with

∇f(0, 0) = (0, 0), ∇2f(0, 0) =
[
2 0
0 8

]
, f(0, 0) = −1 > f(0, 2) = −17.

There are no other critical points.

NLP Myth 7. If f is continuous, the closure of its strict interior equals its level set. That
is, cl{x : f(x) < 0} = {x : f(x) ≤ 0}.

One importance of this in stability — see NLP Myth 8.

Counterexample. Let f be the following function on �:

f(x) =

 0 if x < 0
(x− 1)2 − 1 if 0 ≤ x < 2

0 if 2 ≤ x

f is continuous (and quasiconvex). However, the strict interior of the 0-level set is (0, 2),
so its closure is only [0, 2]. We lose the flat portions in the tails.

NLP Background — Semi-continuity
Some myths involve continuity properties of the optimal value as a function of the right-
hand side. This requires us to consider the feasibility region a point-to-set map, as follows.
Let X(b) = {x ∈ X : g(x) ≤ b} denote the feasible region, and let B = {b : X(b) 6= ∅}.
The optimal value function is f∗(b) = sup{f(x) : x ∈ X(b)}, and the optimality region is
X∗(b) = {x ∈ X(b) : f(x) = f∗(b)}. Unless stated otherwise, we are interested in continuity
properties at b = 0, and we assume 0 ∈ B.

The optimal value function is lower semi-continuous (lsc) at b = 0 if

lim inf
b→ 0

f∗(b) ≥ f∗(0).

The optimal value function is upper semi-continuous (usc) at b = 0 if

lim sup
b→ 0

f∗(b) ≤ f∗(0).

The optimal value function is continuous if it is both lsc and usc.

The neighborhood of a set S ⊆ �n is given by:

Nε(S) = {y ∈ �n : ||y − x|| ≤ ε for some x ∈ S},

where ε > 0 and ||•|| is any norm of interest.
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A point-to-set map S(b) is lower semi-continuous (lsc) at b = 0 if for bk→ 0 and ε > 0

∃K 3 S(0) ⊂ Nε(S(bk)) for k > K.

S(b) is upper semi-continuous (usc) at b = 0 if for bk→ 0 and ε > 0

∃K 3 S(bk) ⊂ Nε(S(0)) for k > K.

NLP Myth 8. Given the objective is continuous and the feasible region is non-empty and
compact at b = 0, the optimal value function is lsc at b = 0.

Evans and Gould[18] provide the following:

Counterexample. max x : g(x) ≤ 0, where g is given by:

g(x) =

 x3 if x ≤ 0
0 if 0 ≤ x ≤ 1
(x− 1)3 if x ≥ 1.

Then, for bk = − 1
k3 , we have f∗(bk) = − 1

k → 0, but f∗(0) = 1. The key to this discontinuity
is that cl{x : g(x) < 0} 6= {x : g(x) ≤ 0}.

NLP Myth 9. Given the objective is continuous and the feasible region is non-empty and
compact at b = 0, the optimal value function is usc at b = 0.

Evans and Gould[18] provide the following:

Counterexample. max x : g(x) ≤ 0, where g has the following shape:

Then, for bk = g(k), we have f∗(bk) = k→∞, but f∗(0) = 1. The key to this discontinuity
is that {x : g(x) ≤ b} is unbounded for all b > 0 (even though {x : g(x) ≤ 0} is bounded).
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NLP Myth 10. If the feasibility region and optimal value function are lsc at b = 0, so is the
optimality region.

Greenberg and Pierskalla[30] provide the following:

Counterexample. Consider max x : g(x) ≤ 0, where g is given in NLP Myth 9. Specifically,
let g(x) = min{x2 − 1, e−x2} (they cross at about x = ±1.3). We have

X(b) =


[−
√
b+ 1,

√
b+ 1 ] if − 1 < b < 0;

[−1, 1 ] if b = 0;
[−
√
b+ 1,

√
b+ 1 ] ∪ [

√
− ln b,∞

)
if 1 > b > 0.

We have(
− 1 ≥ −

√
b+ 1− ε and 1 ≤

√
b+ 1 + ε

)
↔ 1− ε ≤

√
b+ 1↔ b ≥ ε2−2 ε .

Hence, for any ε > 0, let b ≥ ε2−2 ε to have X(0) ⊂ Nε(X(b)). This proves that X is lsc
at b = 0. Further,

f∗(b) =


√
b+ 1 if − 1 < b < 0;
1 if b = 0;
∞ if 1 > b > 0.

Hence, lim infb→ 0 f
∗(b) = 1 = f∗(0), so f∗ is lsc at b = 0.

Now consider the optimality region:

X∗(b) =


{
√
b+ 1} if − 1 < b < 0;

{1} if b = 0;
∅ if 1 > b > 0.

Let bk = e−k, so X∗(bk) = ∅ for all k. Then,

X∗(0) = {1} 6⊂ Nε(X∗(bk)) = ∅,

so X∗ is not lsc at b = 0.
Also see Dantzig, Folkman, and Shapiro[15] and Gauvin and Dubeau[23].

NLP Myth 11. If the feasibility region and optimal value function are usc at b = 0, so is the
optimality region.

Greenberg and Pierskalla[30] provide the following:

Counterexample. Consider max x : g(x) ≤ 0, where g is given in NLP Myth 8. We have

X(b) =

 (−∞, 3
√
b ] if b < 0;

(−∞, 1] if b = 0;
(−∞, 1 + 3

√
b ] if b > 0.

Since Nε(X(0)) = (−∞, 1 + ε], we have

X(b) ⊂ Nε(X(0)) for b ≤ ε3 .
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Hence, X is usc at b = 0. Further,

f∗(b) =


3
√
b if b < 0;

1 if b = 0;
1 + 3
√
b if b > 0.

Hence,
lim sup
b→ 0

f∗(b) = 1 = f∗(0),

so f∗ is usc at b = 0.
Now consider the optimality region:

X∗(b) =

 {
3
√
b} if b < 0;

{1} if b = 0;
{1 + 3

√
b} if b > 0.

We have Nε(X∗(0)) = [1 − ε, 1 + ε]. Let b ↑ 0, so X∗(b) = { 3
√
b} 6⊂ Nε(X∗(0)) for ε < 1.

Hence, X∗ is not usc at b = 0.

Also see Dantzig, Folkman, and Shapiro[15] and Gauvin and Dubeau[23].

NLP Myth 12. A set is convex if it contains the midpoint of any pair of its points.

Counterexample. The set of rational values.

NLP Myth 13. A convex function is continuous.

This is true in the interior of its effective domain, but not necessarily on its boundary.

Counterexample. Let f : �+→�, with f(0) = 1 and f(x) = x if x > 0.

NLP Myth 14. A convex function is upper semi-continuous on its boundary.

Fenchel[20, 21] shows that lim infy→ x f(y) ≤ f(x), and his example, which follows, shows f
need not be upper semi-continuous on the boundary.

Counterexample. Consider the following:
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X = {x ∈ �2 : x2 > 0 ∨ x = (0, 0)}

f(x) =


x2

1 + x2
2

2x2
if x2 > 0;

1 if x = (0, 0).
No points on x1-axis, except (0, 0).

f is convex on X and lim infy→(0,0) f(y) = 0. By letting xk take the nonlinear path such
that xk2 = (xk1)3 = 1

k ,

lim sup
y→(0,0)

f(y) = lim
k→∞

f(xk) = lim
k→∞

(xk1)2 + (xk1)6)
2(xk1)3 = lim

k→∞

(
k

2 + 1
2k3

)
=∞.

NLP Myth 15. A strictly quasiconvex function is quasiconvex.

The definition of strictly quasiconvex says that f is defined on a convex set X, and f(αx +
(1 − α)y) < max{f(x), f(y)} for x, y ∈ X such that f(x) 6= f(y) and α ∈ (0, 1). (Note that
the definition imposes no restriction if f(x) = f(y).) Karamardian[37] found the following:

Counterexample. X = � and f(x) = 0 for x 6= 0, f(0) = 1. It can be shown that f is strictly
quasiconvex, but the level set, {x : f(x) ≤ 0}, is not convex, so f is not a quasiconvex
function.

This is what led to the definition of an explicitly quasiconvex function by Martos[43]. Details
and further properties are given by Greenberg and Pierskalla[29].

NLP Myth 16. The LMR is sufficient for a differentiable, quasiconvex program.

We are given
min f(x) : g(x) ≤ 0, x ∈ �n,

where f and g are differentiable, quasiconvex functions on �n. The myth asserts that x∗ is
optimal if g(x∗) ≤ 0 and there exists λ ≥ 0 such that

∇f(x∗) + λ∇g(x∗) = 0 and λg(x∗) = 0.

That is, the LMR is sufficient for optimality, which is true for convex programs.

Counterexample. Majumdar[41] provides the following:
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min f(x) : −1 ≤ x ≤ 4,

where

f(x) =
{
x(x− 2) if x ≤ 2

0 if x > 2

At x = 3, which is feasible, the LMR is satisfied with λ = 0. However, this is not optimal
since f(1) < 0 = f(3).

NLP Myth 17. Let f be convex on X 6= ∅, where X ⊆ �n, and the range of f is in
�m. Then, either there exists x ∈ X such that f(x) ≤ 0, or there exists y ∈ �m such that
yTf(x) > 0 for all x ∈ X. Further, the two alternatives exclude each other.

The reason this seems reasonable is due to the theorem by Fan, Glicksburg and Hoffman[19],
where the first system is f(x) < 0, and the alternative is y ∈ �m \ {0} such that yTf(x) ≥ 0
for all x ∈ X. The myth “seems reasonable,” considering related transposition theorems in
linear systems.

Counterexample. Let X = {(x1, x2) : x2 > 0 ∨ (x2 = 0 and x1 > 0)} and f(x) = xT.
Then, f(x) ≤ 0 has no solution in X. The (fallacious) alternative is y ≥ 0 and yTf(x) =
y1x1 + y2x2 > 0 for all x ∈ X. If y1 > 0, let x2 = 1 and x1 ≤ −y2

y1
, so x ∈ X, but yTx ≤ 0.

If y1 = 0, let x2 = 0 and x1 > 0, so yTx = 0. Thus, the alternative system also has no
solution.

NLP Myth 18. Suppose x∗ ∈ argmax{f(x) : x ∈ X, g(x) ≤ 0} and g(x∗) < 0. Then,
x∗ ∈ argmax{f(x) : x ∈ X, g(x) ≤ b} for any b > 0.

This is true if f is concave and g is convex on X, in which case x∗ is the (unconstrained)
maximum of f on X.

Counterexample. max x1 + 2x2 : x1, x2 ∈ {x : x(1− x) = 1}, 2x1 + 4x2 − 3 ≤ b.
At b = 0, x∗ = (1, 0) and g(x∗) < 0; however, at b = 4, the optimal solution is x∗ = (0, 1),
which is not optimal for b = 0.

Other examples, which are not integer-valued, include the case where x0 is a global maximum
for b = 0, but it is only a local maximum for b > 0. The objective function (f) decreases for a
while, but then it turns back upward to a maximum at x∗ > x0 with f(x∗) > f(x0).
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NLP Myth 19. Cauchy’s steepest ascent either diverges or converges to a relative maximum.

We seek to maximize f(x), and the iterations are:

xk+1 = xk + sk∇f(xk), where sk > 0.

Wolfe[69] presented an insightful analysis, but he later corrected some statements that seemed
intuitive at first, such as this myth.
Counterexample. Wolfe[70] provides the following: f(x, y) = − 1

3x
3 − 1

2y
2, which is concave

for x > 0. Starting at (x0, y0) such that 0 < x0 < 1, the sequence satisfies 0 < xk < 1
for all k. Moreover, {(xk, yk)}→(0, 0), which is not a relative maximum. Wolfe discusses
this further, giving more insight into underlying behavior when studying the differential
equation ẋ = ∇f(x).

NLP Myth 20. If f is concave on [a, b], the truncated gradient algorithm converges to an
optimal solution. That is, x′ = x+ sd yields a sequence for which d = 0 in the limit, where d
is the projected steepest ascent direction:

dj =



∂f(x)
∂xj

if aj < xj < bj

max
{

0, ∂f(x)
∂xj

}
if aj = xj

min
{

0, ∂f(x)
∂xj

}
if xj = bj .

Note: d = 0 if, and only if, x satisfies the first-order optimality conditions, which is equivalent
to x being optimal in the case of a concave maximand. If d 6= 0, s ∈ argmaxt>0{f(x+ td)}.

Wolfe[71] provided the following:
Counterexample. Let f(x, y, z) = − 4

3 (x2 − xy + y2) 3
4 + z, on the cube, [0, 100]3. It can

be shown (non-trivially) that f is concave, and that the truncated gradient algorithm
converges to the non-optimal point, (0, 0, c), where c < 100, depending on the starting
point (in particular, c = 0 for z0 = 0.1). See Dussault and Fournier[17] and Greenberg[28]
for some details.

The basic problem is that the zig-zagging can cause non-finite convergence on some face, but
the optimum lies on another face.

NLP Myth 21. Rosen’s projected gradient algorithm with linear constraints and inexact line
search converges to a Kuhn-Tucker point.

The NLP is max f(x) : Ax ≤ b, where f is continuously differentiable. The active set of
constraints is denoted I(x) = {i : Ai•x = bi}, and AI(x) is the submatrix whose rows are I(x).
At a general iteration, Rosen’s projected gradient method[60] is to set the (feasible) direction:
d(x) = P (x)∇f(x), where P (x) is the projection matrix onto the active face:

P (x) = I −A
T

I(x)
[
AI(x)A

T

I(x)
]−1

AI(x).
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If d(xk) = 0, the first-order (Lagrangian) conditions are satisfied, and the algorithm termi-
nates. If d(xk) 6= 0 and Ai•d(xk) ≤ 0 for all i 6∈ I(xk), the problem is unbounded, and
the algorithm terminates. Otherwise, let I(x) = {i 6∈ I(xk) : Ai•d(xk) > 0} ( 6= ∅), and

s = min
i∈I(xk)

bi −Ai•xk

Ai•d(xk) . Then, the iteration is given by:

xk+1 = xk + skd(xk),

where sk is the step size, limited by 0 ≤ sk ≤ s. An inexact line search is specifying sk
without optimizing along the direction, such as using Armijo’s rule[2] (See NLP Myth 36.)
Also, successive directions are not orthogonal, so the zig-zag phenomenon does not apply, as
in NLP Myth 20.

Counterexample. Hu[36] provides the following:

max −x2
1 + x2

2 : x ≥ 0, x1 − x2 ≤ 1.

The step size is determined by a near-optimal line search:

f(xk + skd(xk)) ≥ max
0<s≤s

{f(xk + sd(xk))} − εk,

where εk = 21−k. Starting at x0 = (2, 1), Hu’s inexact line search generates the sequence
{xk} = {(1 + 2−k, 2−k)}→(1, 0) (with I(xk) = {3}, d(xk) = (−xk1 + xk2 ,−xk1 + xk2) =
(−1,−1), and sk = 21−k). The optimal step size is s∗ = s = 2−k, so

f(xk + skd(xk))− f(xk + s∗d(xk)) = −(1 + 21−k) − (−1) = −21−k = − εk .

This dispels the myth because the only Kuhn-Tucker point is at x = 0.

NLP Myth 22. Rosen’s initial-point method converges to a feasible solution or ascertains
that there is no feasible solution.

This myth is concerned with Rosen’s method[60] for obtaining an initial feasible point to the
system, Ax ≥ b.

Notation: Ai is the i th row of A.

The test condition at each iteration is:

Aj +
∑

i∈I(xk)

λiAi = 0 for some λ ≥ 0,

where I is the active set (see NLP Myth 21) and j ∈ argmini{Aixk− bi}. If the test condition
holds, the system is not feasible. Otherwise, a member of the active set is selected for which
its multiplier is negative:

q ∈ I(xk) : λq < 0.

Then, xk+1 is obtained by solving:

Aix
k+1 = bi for i ∈ I(xk) \ q ∪ {j}.

This results in Aqxk+1 > bq and Aixk+1 ≥ bi for all i ∈ I(xk).
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Counterexample. Powell[56] provides the following:

10− 1
2 (x1 − 3x3 + 2δ) ≥ 0, 5− 1

2 (−x1 − 2x2 + 2) ≥ 0,
10− 1

2 (−x2 − 3x3 + 2δ) ≥ 0, 5− 1
2 (−2x1 + x2 + 2) ≥ 0,

10− 1
2 (−x1 − 3x3 + 2δ) ≥ 0, 5− 1

2 (x1 + 2x2 + 2) ≥ 0,
10− 1

2 (x2 − 3x3 + 2δ) ≥ 0, 5− 1
2 (2x1 − x2 + 2) ≥ 0, x3 ≥ 0,

where 0 < |δ| ≤ 0.1. For δ < 0, the system is infeasible; for δ > 0, the system has a
feasible solution, x = 0. The counterexample, therefore, shows non-convergence for both
situations.
For δ = 0.1 and x3 = 0, constraints 1, 3, 5, and 7 are simply −0.2 ≤ x1, x2 ≤ 0.2, and
constraints 2, 4, 6, and 8 are redundant: −2 ≤ x+ 2y, 2x− y ≤ 2.

Rosen’s algorithm cycles among 8 points:

x1 = (−2δ, 2− 4δ, 0), x2 = (−2δ, 1 + δ, 0), x3 = (2− 4δ, 2δ, 0),
x4 = (1 + δ, 2δ, 0), x5 = (2δ,−2 + 4δ, 0), x6 = (2δ,−1− δ, 0),
x7 = (−2 + 4δ,−2δ, 0), x8 = (−1− δ,−2δ, 0).

For k > 8, xk = xk−8.
The values of Aixk − bi for i = 1, . . . , 9 are as follows:

i x1 x2 x3 x4 x5 x6 x7 x8

1 × 10 1
2 0 0 2 − 2δ 1 + 3/d 4δ 4δ −2 + 6δ −1 + δ †

2 × 5 1
2 −2 + 10δ † 0 0 1 − 5δ 6 − 10δ 4 4 3 + 5δ

3 × 10 1
2 −2 + 6δ −1 + δ † 0 0 2 − 2δ 1 + 3δ 4δ 4δ

4 × 5 1
2 4 3 + 5δ −2 + 10δ † 0 0 1 − 5δ 6 − 10δ 4

5 × 10 1
2 4δ 4δ −2 + 6δ −1 + δ † 0 0 2 − 2δ 1 + 3δ

6 × 5 1
2 6 − 10δ 4 4 3 + 5δ 10 − 2δ 0 0 1 − 5δ

7 × 10 1
2 2 − 2δ 1 + 3δ 4δ 4δ −2 + 6δ † −1 + δ † 0 0

8 × 5 1
2 0 1 − 5δ 6 − 10δ 4 4 3 + 5δ −2 + 10δ † 0

9 0 0 0 0 0 0 0 0

†Most violated

Note the active sets — in particular, I(x1) = {1, 8, 9}. The only violated constraints at x1

are 2 and 3. The most violated constraint is 2, rather than 3, because of the scale factors:

5− 1
2 |10δ − 2| > 10− 1

2 |6δ − 2| (for δ ∈ [−0.1, 0.1]).

Thus, j = 2, and the test condition is:

A2 + λ1A1 + λ8A8 + λ9A9 = 0
5− 1

2 (−1,−2, 0) + λ110− 1
2 (1, 0,−3) + λ85− 1

2 (2,−1, 0) + λ9(0, 0, 1) = 0
⇒λ1 = 5

√
2, λ8 = −2, λ9 = 3

√
5.

Thus, q = 8, yielding x2 as the solution to

Aix
2 = bi for i ∈ {1, 2, 9}.
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The remaining sequence is easily verified, and at x8, the most violated constraint is j = 1.
The test condition is:

A1 + λ7A7 + λ8A8 + λ9A9 = 0
10− 1

2 (1, 0,−3) + λ710− 1
2 (1, 0,−3) + λ85− 1

2 (2,−1, 0) + λ9(0, 0, 1) = 0
⇒λ7 = −1, λ8 = 0, λ9 = 0.

Thus, q = 7, which brings us back to x1 by solving

Aix
8 = bi for i ∈ {1, 8, 9}.

The figure on the right shows the feasible
region in the x1-x2 plane with x3 = 0 and
δ = 0.1. The cycle is shown to move from the
intersection of a redundant constraint with
one of the (non-redundant) bounds. The in-
tersections correspond to the active sets (with
constraint 9 in every active set.) The redun-
dancies keep the method from reaching the
feasible region.

Opportunity Knocks
Does Rosen’s method work when there are no redundant constraints?

NLP Myth 23. Newton’s method has converged when the change in the iterate value is less
than some specified, small tolerance.

Let f : �→� be a function in C1, for which we seek a root, f(x) = 0. Let {xk} be generated
by Newton’s method:

xk+1 = xk − f(xk)
f ′(xk) .

The stopping criterion in the statement says that we terminate when

|xk+1 − xk| < τ,

where τ is the tolerance. Donovan, Miller and Moreland[16] provided the following:
Counterexample. f(x) = 3

√
x e−x

2 . The generated sequence satisfies the iteration equation:

xk+1 = xk − 3xk

1− 6(xk)2 ,

which does not converge. Yet, |xk+1 − xk| < τ is equivalent to:
∣∣∣∣ 3xk

1− 6(xk)2

∣∣∣∣ < τ , which is

eventually satisfied since the authors prove that {xk}→∞.
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They also derive properties of f and insight into its construction for the counterexample.
In particular, they note that the first part, 3

√
x, fails Newton’s method on its own (xk+1 =

−2xk implies x = 0 is a repelling fixed point). The second part, e−x2 , gives the “false
convergence” property.

NLP Myth 24. Newton’s method converges to a stationary point if the starting point is
sufficiently close.

Newton’s method is applied to the root-finding problem, g(x) = 0, with the iterations:

xk+1 = xk − [∇g(xk)]−1g(xk),

where ∇g(xk) is assumed to be non-singular when g(xk) 6= 0. The algorithm stops if g(xk) = 0.
(In optimization, this is applied to the derivative of the objective function, where g(x) =
∇f(x).) In one dimension, Newton’s method simplifies to:

xk+1 = xk − g(xk)
g′(xk) if g′(xk) 6= 0.

A simple counterexample to the myth is any quadratic with two distinct roots, a, b, and
x0 = a+b

2 . In that case g′(x0) = 0, so Newton’s method is undefined. (We can make a, b
arbitrarily close to each other to satisfy the condition of the myth.)

A more interesting example is analyzed by Ascher[3], where Newton’s method cycles — that
is, it generates x0 after a finite number of iterations. (The analysis goes beyond this simple
example.)

Counterexample. Let g(x) = x2 + 3, so xk+1 = 1
2x
k − 3

2xk . Then, for x
0 = ±1, the iterates

cycle in two iterations.

NLP Myth 25. Newton’s method has converged when the change in the iterate value is less
than some specified, small tolerance.

Let f : �→� be a function in C1, for which we seek a root, f(x) = 0. Let {xk} be generated
by Newton’s method:

xk+1 = xk − f(xk)
f ′(xk) .

The stopping criterion in the statement says that we terminate when

|xk+1 − xk| < τ,

where τ is the tolerance. Donovan, Miller and Moreland[16] provided the following:

Counterexample. f(x) = 3
√
x e−x

2 . The generated sequence satisfies the iteration equation:

xk+1 = xk − 3xk

1− 6(xk)2 ,
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which does not converge. Yet, |xk+1 − xk| < τ is equivalent to:
∣∣∣∣ 3xk

1− 6(xk)2

∣∣∣∣ < τ , which is

eventually satisfied since the authors prove that {xk}→∞.
They also derive properties of f and insight into its construction for the counterexample.
In particular, they note that the first part, 3

√
x, fails Newton’s method on its own (xk+1 =

−2xk implies x = 0 is a repelling fixed point). The second part, e−x2 , gives the “false
convergence” property.

NLP Background — Sequence construction
In the next several myths, convergence to an optimum is called into question. Unlike several
previous myths that address this, an approach is taken to construct a sequence, {xk}, that
either has no limit, or {xk}→x∞ but ∇f(x∞) 6= 0 — that is, the limit is not even a stationary
point. Powell[54] introduced the notion of identifying such sequences that could be generated
by some variable metric algorithms. He raised the question whether there exists parameters
p for a family of functions, f(x; p), such that ∇2f(x; p) is continuous, {xk} is generated from
the algorithm, and there exists c > 0 such that

∣∣∣∣∇f(xk; p)
∣∣∣∣ ≥ c for k = 1, 2, . . .

This is how he constructed his counterexample in NLP Myth 28, and how Thompson[62] ap-
proached his counterexample construction for quasi-Newton methods. More recently, Masca-
renhas[46] focused on constructing counterexamples for line search methods, and Dai[14] focused
on counterexample construction that satisfies Wolfe’s step size conditions (NLP.18):

f(xk+1)− f(xk) ≤ Ask∇f(xk)Tdk (NLP.18)
∇f(xk+1)T dk ≥ B∇f(xk)Tdk

for some constants, 0 < A < B < 1.

Non-convergent sequences include cycling (or spiraling), where one coordinate repeats its value.
The other coordinates could be convergent. The constructions by Powell and Dai have {xk1}
cycling while {xkj }→ 0 for j > 1. The following is a generic plot where {xk1} cycles around
{−1,− 1/2 , 0, 1/2 , 1}, xk2 = 0.7k, and xk3 = −0.7k.

Plot of xk Top view (x1-x2 plane)

These constructions are designed to establish a proof of non-convergence for the algorithm in
question (under stated conditions). Other examples are not proofs, but rather offer empirical
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evidence of stalling — that is, the algorithm terminates at a non-solution point, but it is not
proven to be non-convergent. An example of this is given in NLP Myth 27.

NLP Myth 26. Newton’s method converges to a stationary point if Wolfe’s conditions are
satisfied.

We consider unconstrained minimization, minx∈�n f(x), where f has continuous second
derivatives. As usual, let sk and dk denote the step size and direction at iteration k, re-
spectively (so xk+1 = xk + skd

k).

Counterexample. Mascarenhas[46] provides the following:

f(x) = ψ(x) + ψ(x)2 for x ∈ �2

ψ(x) = x1 + x2
2 − 28x1x

3
2 + 24x2

1 + 3(105x3
2 − 2)u(x2)

u(y) = y3(ln 2)2

8π2 sin2
(
π ln y2

ln 2

)
for y 6= 0

u(0) = 0.

Let xk =
(

8−k
2−k

)
. With some abuse in notation, let y = 2−k, so xk =

(
y3

y

)
and

∇f(xk) = ∇ψ(xk)
(
1 + 2ψ(xk)

)
=
(

1 + 20y3

3y2(1− 28y3)

)
.

We have {xk}→ 0, but {∇f(xk)}→(1, 0)T, so this sequence converges to a non-stationary
point. It remains to prove that this sequence can be generated by Newton’s method with
a step size rule that satisfies Wolfe’s conditions.
The hessian of the objective function is:

∇2f(xk) = ∇2ψ(xk) + 2
(
∇ψ(xk)∇ψ(xk)T+ψ(xk)∇2ψ(xk)

)
=
[

48 −84y3

−84y3 147y4

]
.

The hessian of the iterates is positive definite (note det
(
∇2f(xk)

)
= 7056y4−7056y6 > 0).

Mascarenhas sets the step size to

sk = 2
1 + 2ψ(xk)∇ψ(xk)Tdk.

The sequence is generated by Newton’s method if ∇2f(xk)dk = −sk∇f(xk). Because
∇2ψ(xk)dk = 0, this is equivalent to

∇2f(xk)dk = 2∇ψ(xk)∇ψ(xk)Tdk.
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Thus, the task is to show

2∇ψ(xk)∇ψ(xk)Tdk = 2
1 + 2ψ(xk)∇ψ(xk)Tdk∇ψ(xk)(1 + 2ψ(xk)).

Upon canceling 1 + 2ψ(xk) on the right and 2 on both sides of the equation, we obtain the
identity:

∇ψ(xk)
(
∇ψ(xk)Tdk

)
=
(
∇ψ(xk)Tdk

)
∇ψ(xk).

Hence, {xk} is generated by Newton’s method with the specified step size. It remains to
show that Wolfe’s conditions are satisfied. Mascarenhas shows this with A = 1

2 and B = 3
4 .

f(xk+1)− f(xk) =
(
ψ(xk+1)− ψ(xk)

) (
1 + 2ψ(xk)

)
= −3y3 (1− 8y6 − 32y9) .

sk∇f(xk+1)Tdk =
(
1 + 2ψ(xk+1)

)
∇ψ(xk+1)T(xk+1 − xk)

=
(
1 + 5

2y
3, 3

4y
2 (1− 7

2y
3))(− 7

8y
3

− 1
2y

)
= − 1

4y
3 (5 + 7

2y
3) .

For Wolfe’s first condition, we need to show

−3
(
1− 8y6 − 32y9) ≤ − 1

8

(
5 + 7

2y
3) ,

which clearly holds. For Wolfe’s second condition, we need to show

− 1
4y

3 (5 + 7
2y

3) ≥ 3
4∇f(xk)T

(
xk+1 − xk

)
= − 3

4y
3 ( 19

8 + 51
2 y

3) .
Equivalently, we must show

5 + 7
2y

3 ≤ 3
(

19
8 + 51

2 y
3) = 7 1

8 + 153
2 y

3,

which holds. Here are some values to compare the left-hand side (LHS) with the right-hand
side (RHS):

k y3 LHS RHS
1 0.1250 5.4375 16.6875
2 0.0156 5.0547 8.3203
3 0.0020 5.0068 7.2744
...
8 0.0000 5 7.125

Mascarenhas provides a second example and a more general analysis of the behavior of the
iterates. Also, see [45] for a generalization and deeper insights.

NLP Myth 27. The BFGS method converges to a stationary point.

Counterexample. Shanno[61] provides the following:

min f(x1, x2) =
(
1.5− x1(1− x2)

)2 +
(
2.25− x1(1− x2)2)2 +

(
2.625− x1(1− x3

2)
)2
.
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(This is known as Beale’s function, which is used to test pathological behavior in NLP.)
Shanno reports that BFGS terminates after 37 iterations with the termination condition:∣∣∣∣xk+1 − xk

∣∣∣∣ < 10−20. Starting from x0 = (100, 100), the computed solution is x33 =
(74.50580319350425, 0.9865597565555755) with objective value 0.43146925. There is little
change from iteration 33 to termination. The optimal solution is at x∗ = (3, 0.5) with
objective value 0. There is also a saddle point at (0, 1), but the sequence does not converge
to that stationary point either.

A possible problem is with the finite precision of the computer, causing a premature ter-
mination despite the very small tolerance. Shanno gives more details and runs additional
experiments to test if inexact line search is the cause. The conclusion is that a more accurate
line search does not result in convergence to a stationary point, though a more precise line
search did improve the terminal solution a little. Also, Shanno’s counterexample is an example
of stalling, based on observed numerical behavior; it is not proven to be non-convergent.

Mascarenhas[44] carried this further and proved that BFGS (and other variable metric algo-
rithms in the Broyden class) can fail with exact line search. His counterexample to conver-
gence is a (non-convex) cubic spline. Also see [45] for perceptive insights stemming from the
symmetry associated with orthogonal transformations of variables.

See Dai[14] for another counterexample construction that satisfies Wolfe’s step size conditions,
but BFGS fails to converge. Also see NLP Myth 28.

NLP Myth 28. The Polak-Ribiére conjugate gradient algorithm converges to a stationary
point.

A general iteration (k > 1) of the algorithm computes the direction vector as:

dk = −gk + βkd
k−1,

where gk = ∇f(xk) 6= 0 and βk = (gk)T(gk − gk−1)/
∣∣∣∣gk−1

∣∣∣∣2. For k = 1, d1 = −g1. The step
size, sk, is the first local minimum of f(xk + sdk) for s > 0. As usual, xk+1 = xk + skd

k.

The Myth asserts limk→∞ gk = 0. Powell[57] points out that
{∣∣∣∣gk∣∣∣∣} is bounded away from

zero only if
{∣∣∣∣dk∣∣∣∣}→∞. From this, he notes that in order to construct a counterexample,

we must have no limit for {xk}. Instead, the iterates must have a coordinate that cycles. He
derives a family of 8-cycle examples with three variables, defined by parameters whose values
are limited by the conditions we seek:

1. The sequence, {xk}, is generated by the Polak-Ribiére algorithm.

2. xk1 = xk−8
1 for k > 8.

3. The objective function (f) is twice continuously differentiable.

Counterexample. Powell[57] provides a spline function of the form:

min f(x) = λi(x1)x2 + µi(x1)x3 for τi−1 ≤ x1 ≤ τi,

where 0 = τ0 < τ1 < · · · < τb are the break-points. The functions λi and µi are twice
continuously differentiable with the symmetry property: λi(v) = λ(τi − (v − τi−1)) and
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µi(v) = µ(τi − (v − τi−1)) for τi−1 ≤ v ≤ τi. (In particular, λ(τi−1) = λ(τi) and µ(τi−1) =
µ(τi).)

The algorithm’s sequence has xk1 cycling around eight values: 0, 336, 1200, 1564, 1565,
1229, 365, 1. The iterates are, for k > 8:

xk1 = xk−8
1 and xkj = θxk−8

j for j = 1, 2,

where θ ∈ (0, 1). Powell shows that ∇2f is continuous and that {f(xk)} is increasing.

Powell derives parameter relations that yield the non-convergence. His function also applies
to show BFGS need not converge to a stationary point.

Dai[14] provides another example of spiraling (where {xk1} cycles while {xkj }→ 0 for j > 1),
with only two variables and a cycle length of six. His construction is different, and he provides
further analysis of convergence properties for a class of conjugate gradient methods, which
includes Polak-Ribiére and BFGS. His focus is on constructing pathological sequences that
satisfy Wolfe’s step size conditions, (NLP.18).

My thanks to Professor Dai for providing this specialization of his counterexamples, in-
cluding specified parameter values.

Counterexample.
f(x) = (g(x1;u, p) + g(x1; v, p)x1)x2,

where g is a univariate function depending upon two vector-parameters. The parameters
p, u (and v) are each m-vectors, where m is the length of the cycle. The parameters
p1, . . . , pm define endpoints of intervals in �; u and v define the value of g for |x1−pi| ≤ 0.1.
The remaining values of g are determined by the function:

ψ(x1; p`, pr, u`, ur) = u` + 6(x1 − p`)5 − 15(ur − u`)(x1 − p`)4 + 10(ur − u`)2(x1 − p`)3

(ur − u`)4 .

Specific parameter values for this counterexample are:

p = (−87.5, −86.5, −73.5, 73.5, 86.5, 87.5);

u =
(

8251
458 , −

6981
212 , −

2847
387 , −

2847
387 , −

6981
212 ,

8251
458

)
;

v =
(

55
229 , −

33
106 , −

44
387 ,

44
387 ,

33
106 , −

55
229

)
.

The g-function values are thus:

g(x1;u, p) =



u1 for x1 ∈ (−∞,−87.4]
ψ(x1, p1, p2, u1, u2) for x1 ∈ (−87.4,−86.6)
u2 for x1 ∈ [−86.6,−86.4]
ψ(x1, p1, p2, u2, u3) for x1 ∈ (−86.4,−73.6)
u3 for x1 ∈ [−73.6, 73.6]
ψ(x1, p1, p2, u4, u5) for x1 ∈ (73.6, 86.4)
u5 for x1 ∈ [86.4, 86.6]
ψ(x1, p1, p2, u5, u6) for x1 ∈ (86.6, 87.4)
u6 for x1 ∈ [87.4,∞).
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It is similar for g(x1; v, p), using the same endpoints but different values, v 6= u.
This construction renders f twice continuously differentiable. An infinitely differentiable
counterexample is given as follows. Let

φ(x1; p`, pr) =

 e
−

1
(x1−p`)(pr−x1) for p` < x1 < pr

0 otherwise.

Dai proves this generates the 6-cycle:

x1
1 = p1, x

2
1 = p3, x

3
1 = p5, x

4
1 = p6, x

5
1 = p4, x

6
1 = p2, x

k
1 = xk−6

1 for k > 6.

He further proves that the step size rule satisfies Wolfe’s conditions.

Opportunity Knocks
Both Powell’s and Dai’s counterexamples could benefit from the construction of specific numer-
ical examples with an implementation (for example, with Matlab R©). If a cycle is unstable,
numerical error can cause the sequence to “jump out” of the cycle and converge. It would
be useful to have [a family of] counterexamples that are both theoretically and numerically
non-convergent.

NLP Myth 29. Cyclic descent produces a local minimum.

We are given the mathematical program: min f(x) : x ∈ X, where X is a non-empty, closed
subset of �n. Cyclic descent proceeds as follows (where ei is the i th unit vector):

Set y = x
for i=1:n do

find t∗ ∈ argmin{f(y + tei) : (y + tei) ∈ X}
Set y ← y + t∗ei

end for
if ||y − x|| ≤ τ , exit; else set x← y and repeat.

The problem is that while f may not be increased by a change in any one variable, it could
increase with simultaneous changes in more than one variable.

Counterexample. f(x) = (x2 − x2
1)(x2 − 2x2

1); start at x = (0, 0).
mint f(t, 0) = mint 2t4 = 0, so there is no change after i = 1. Similarly, mint f(0, t) =
mint t2 = 0, so there is no change after i = 2. Hence, cyclic descent terminates after one
iteration with the same point with which it started, x = (0, 0). This is not a minimum,
even locally, because we can let x2 = 3

2x
2
1. Then, for x1 arbitrarily close to 0, but x1 6= 0,

f(x) = − 1
4x

2
1 < 0.

Also see Powell[55].
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NLP Myth 30. If one algorithm has a higher order of convergence than another, it is better.

The reason that this is wrong is that the goodness of a solution (for example, how close it is to
optimal) cannot be accurately described by one number. Greenberg[26] provides the following:

Counterexample. Let {xk} be a sequence of solutions converging to x∗, and let f(x∗) be
the optimal objective value. Define the deviations, {ek = f(xk)− f(x∗)}. For definiteness,
suppose ek > 0 for all k and we are minimizing (so {f(xk)} is approaching from above, as
in a primal algorithm). Define the “goodness” of xk to be ek — that is, how close f(xk)
is to the optimal objective value. Now suppose another algorithm generates the sequence
{Xk} whose associated goodness is {Ek}, where

Ek =
{

min{ek, ek+1}/k if k is odd;
Ek−1 if k is even.

The result is that the second sequence is sublinear (the worst possible for a monotonically
decreasing sequence), but Xk is always better since Ek < ek for all k.
An algorithm that has plateaux exhibits this behavior — no improvement for an iteration,
then a sharp improvement. Some measures of the order of convergence take constant
plateaux into account, but the example can be revised to have a plateau of length k at
iteration k, so the order of convergence is still sublinear.

NLP Myth 31. For a convex program, the Generalized Lagrange Multiplier Method converges
to an optimal solution.

Counterexample. Let f∗(b) = max{f(x) : 0 ≤ x ≤ b} for b ≥ 0, where

f(x) =


2
√
x if x ≤ 1

x+ 1 if 1 ≤ x ≤ 2
4− e−(x−2) if x ≥ 2

(Note: f∗(b) = f(b).) Using any interval-reduction method[27] that does not terminate
finitely, the left endpoint converges to 1 and the right endpoint converges to 2.
Finite termination occurs when the two endpoints equal the linearity portion, so the next
iteration chooses the multiplier equal to the slope (λ = 1). Then, the set of optimal
solutions is the interval [1, 2], so that any b in this interval is generated by searching the
set of alternative optima. Without finite termination, no b in (1,2) is a limit point. There
is thus a pseudo-gap[25] for b ∈ (1, 2) in that the algorithm cannot reach the solution, but
there is no Lagrangian duality gap.
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NLP Myth 32. Ritter’s method to solve a QP converges to a global optimal solution.

The counterexample was found by Zwart[72]. The problem is that the sequence of feasible
regions (with a cut added each iteration) does not approach the optimality region. A non-
global optimum point persists in the sequence of optima.

Counterexample.

max 2x2
1 + x1x2 + 2x2 : −x1 ≤ 0, x1 + x2 ≤ 1, 1.5x1 + x2 ≤ 1.4, −x2 ≤ 10.

Each cut has the form 1
2k x1 + x2 ≤ 1

2k , and the optimal point is at the extreme point,
(0, 1

2k ). Ritter’s method does not eliminate (0,0), so it cannot converge to the global
optimum, which is at (7.6,−10).

NLP Myth 33. Tui’s method to maximize a convex function subject to linear constraints
converges to a global optimal solution.

This counterexample was found by Zwart[72]. The problem is that Tui’s algorithm can cycle
— that is, repeat the generated subproblems.

Counterexample.
max x2

1 + x2
2 + (x3 − 1)2 : x2 ≥ 0

x1 + x2 − x3 ≤ 0
−x1 + x2 − x3 ≤ 0

12x1 + 5x2 + 12x3 ≤ 22.8
12x1 + 12x2 + 7x3 ≤ 17.1
−6x1 + x2 + x3 ≤ 1.9

Zwart gives the following generated sequence, starting at x = (0, 0, 0).
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Notation: q indexes auxiliary problem; kq indexes solution generated for qth

auxiliary problem; yqkq is Tui’s search direction. See [72] for details.

Also see Porembski[53].

NLP Myth 34. The Nelder-Mead method converges to a local optimum.

The Nelder-Mead method is a very good heuristic that does well in many hard nonlinear
problems. For a long time after its publication in 1965, many thought it converges to a local
optimum, but McKinnon[47] provided the following:

Counterexample. Let

f(x, y) =
{
AB|x|c + y + y2 if x ≤ 0
B xc + y + y2 if x ≥ 0,

where A,B, c are positive constants. Also, f is convex and has continuous first derivatives
for c > 1.

Contours of McKinnon’s func-
tion for A = 6, B = 60,
c = 2, taken from [47]. Note:
(0,−1) is a descent direction
from (0, 0).

McKinnon proves (nontrivially) that for certain choices of these constants, the algorithm
repeats the inside contraction step with the best vertex remaining fixed. In particular,
with A = 6 and B = 60, the counterexample works for 0 ≤ c ≤ c, and it does not work for
c > c, where c ≈ 3.06, from McKinnon’s derivation.

NLP Myth 35. Rosen’s decomposition method converges to an optimal solution for convex
programs.

We are given the convex program:

min
(x,y)

cx : Ax ≥ b(y),
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where b is a convex function. Rosen’s decomposition is to separate x and y problems and
proceed as follows. For any fixed y = ȳ, we obtain x̄ by solving:

LP(ȳ): min
x

cx : Ax ≥ b(ȳ).

Partition [A b] into the tight and surplus constraints at the solution:

Bx̄ = bB(ȳ), Nx̄ > bN (ȳ).

(So A = ( BN ) and b =
(
bB
bN

)
.) We suppose B is nonsingular and use the tight constraints to

eliminate x = B−1bB(y) for any choice of y. To maintain feasibility of the surplus constraints,
we require

bN (y)−N TB−1bB(y) ≤ 0.

Using the Taylor expansion at ȳ to linearize the constraints, Rosen’s method solves the non-
linear program:

NLP(B, ȳ): miny cB−1bB(y) :
bN (ȳ) +∇bN (ȳ)(y − ȳ)−N TB−1(bB(ȳ) +∇bB(ȳ)(y − ȳ)

)
≤ 0.

Rosen’s method is to start with y0, then solve iteratively:

1. Solve LP(yk) and obtain B
2. Solve NLP(B, yk) and obtain yk+1.

Subject to some details about step 2, the idea is to solve a sequence of problems that are
decomposed, rather than tackle the whole nonlinear problem.

Grossmann[32] provided the following:

Counterexample. min x : x ≥ y2, x ≥ y. Let the starting value satisfy y0 > 1. Grossmann
proves yk > 1 for all k = 0, 1, . . . , but the optimum is at (x∗, y∗) = (0, 0).
Proceeding inductively, suppose yk > 1. Then, xk = (yk)2, and the optimal basis has the
slack variable s = x− y. Therefore, yk+1 is determined by

yk+1 ∈ argmin{y2 : (2yk − 1)y ≥ (yk)2}.

Since yk > 1, the solution is yk+1 = (yk)2

2yk−1 > 1, and that completes the induction proof.

NLP Myth 36. In methods of feasible directions, it is better to improve the objective function
each iteration than allow it to worsen.

Counterexample. Grippo, Lampariello, and Lucidi[31] illustrated the use of their non-
monotone method

xk+1 = xk − sk[∇2f(xk)]−1∇f(xk),

where sk = sign
(
∇f(xk)T[∇2f(xk)]−1∇f(xk)

)
.

The counterexample applies this to an unconstrained minimization in �2 using Rosen-
brock’s function: f(x1, x2) = 100(x2 − x2

1)2 + (1 − x1)2. The minimum is at x∗ = (1, 1),
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and the starting point is x0 = (−1.2, 1). Their nonmonotone method converges in 7 itera-
tions with f(x4) > f(x3):

k xk1 xk2 f(xk)
0 −1.2000000000 1.0000000000 24.200
1 −1.1752808989 1.3806741573 4.732
2 0.7631148712 −3.1750338547 1.412
3 0.7634296789 0.5828247755 0.056
4 0.9999953111 0.9440273239 0.3132
5 0.9999956957 0.9999913913 1.853×10−11

6 1.0000000000 1.0000000000 3.433×10−20

7 1.0000000000 1.0000000000 < 10−38

Steepest descent using optimal step size takes 33 iterations to get as close. Armijo’s rule[2]
takes 22 iterations. This illustrates that improving the objective function every iteration
is not necessarily a most effective way to reach the optimum.

Generally, Rosenbrock’s function is used to illustrate profuse zig-zagging in Cauchy’s steepest
descent with sk ∈ argmin{f(xk + s∇f(xk)) : s ≥ 0}. The nonmonotone method in this coun-
terexample highlights the need to capture curvature information, as does Newton’s method.
(Also see MacMillan[40] for mixing steepest descent with Newton’s method.)

NLP Myth 37. Sequential quadratic programming (SQP) is quadratically convergent when
it is sufficiently close to the solution.

Given max{f(x) : x ∈ �n, g(x) = 0}, where f, g have continuous second derivatives, theSQP
subproblem is given by the iteration subproblem:

max f(xk) +∇f(xk)(x− xk) + 1
2 (x− xk)TH(xk)(x− xk) :

g(xk) +∇g(xk)(x− xk) = 0,

whereH(xk) is the hessian of the Lagrangian: H(xk) = ∇2f(xk)−λk∇2g(xk). The subproblem
thus requires both xk and λk as input. The constraint is replaced by its linear approximation
from the Taylor series, so the iterates need not be feasible.

The intuition is thatSQP behaves like Newton’s method when it is close to the solution. The
problem is that the step size can become so close to zero that it slows the convergence. This is
known as the Maratos effect, and it can prevent convergence entirely — see Maratos[42], Panier
and Tits[51], Bonnans et al.[7], and Vanden Berghen[63].

Counterexample. Vanden Berghen[63] provides the following:

min 2(x2
1 + x2

2 − 1)− x1 : x2
1 + x2

2 = 1.

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]



NLP Myths February 20, 2010 Page 141

The optimum is at x∗ = (1, 0), and the starting
point is x0 = (0, 1). TheSQP algorithm finds x1 =
(1, 1), and the next step size is zero.

Taken from Vanden Berghen[63].

Also see Powell[58] for an example of the Maratos effect on convergence of Lagrangian Quadratic
Approximation for the NLP:

min f(x) = −x1 + 2(x2
1 + x2

2) : x2
1 + x2

2 = 1.

(The optimal solution is at x∗ = (1, 0), and the NLP is Lagrange regular.)

The Maratos effect can be overcome by Second Order Correction and sometimes by filtering
— see Fletcher, Leyffer, and Toint[22] — and sometimes by non-monotone methods — see
Grippo, Lampariello, and Lucidi[31].

NLP Myth 38. new If an NLP has a unique optimum that satisfies the Mangasaarian-
Fromovitz constraint qualification and the quadratic growth condition, there is a locally convex
augmented Lagrangian. next new B

Consider the NLP:
min f(x) : x ∈ �n, g(x) ≤ 0,

where f, g are once continuously differentiable. Let I(x∗) denote the set of active constraints
at x∗, and let G(x) = g

I(x∗) be the subvector of g, restricted to I(x∗). The Mangasarian-
Fromovitz constraint qualification (MFCQ)† requires the existence of d ∈ �n such that:

∇G(x∗)d < 0. (NLP.19)

(See NLP Myth 2, p. 115.)

The quadratic growth condition is that there exists κ, ε > 0 such that

f(x∗ + d) ≥ f(x∗) + κ ||d||2 , ∀d ∈ �2 : ||d|| < ε . (NLP.20)

The myth asserts that (NLP.19) and (NLP.20) are sufficient to ensure the existence of an
augmented Lagrangian,

La(x, λ, α) = f(x) + λg(x) + αG(x)TG(x),

that is convex in some neighborhood of x∗ (where λ, α ≥ 0).

†Olvi Mangasarian points out that with only inequality constraints, the qualification is due to Arrow,
Hurwicz, and Uzawa; the MFCQ is the extension to both inequality and equality constraints. Most people refer
to MFCQ even when there are only inequality constraints, and the Myth uses the statement by Anitescu[1].
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Anitescu[1] provides the following

Counterexample. Let Q =
[
1 0
0 −2

]
, and define the rotation matrices:

Uk =
[

cos
(
kπ
4
)

sin
(
kπ
4
)

− sin
(
kπ
4
)

cos
(
kπ
4
)] for k = 0, 1, 2, 3.

Define Qk = Uk
TQUk for the NLP:

min x3 : (x1, x2)Qk
(
x1
x2

)
− x3 ≤ 0 for k = 0, 1, 2, 3.

For any v ∈ �2, there exists k such that vTQkv ≥ 1
4 ||v||

2, so x3 ≥ 0. It follows that the
minimum is at x∗ = 0.
All constraints are active, and the MFCQ is satisfied with d = (0, 0,−1). The quadratic
growth condition (NLP.20) is satisfied with constant κ = 1

8 .
Consider the hessian of the Lagrangian with multipliers λ = (λ0, λ1, λ2, λ3) ≥ 0:[∑3

k=0 λkQk 0
0 0

]
.

This is positive semi-definite on the critical cone (where x3 = 0) if, and only if,
3∑
k=0

λkQk � 0.

Anitescu proves this is impossible for any multiplier. By a rotation argument, if there is
one multiplier for which it holds, it has to hold for the rotated multipliers, and then for
their simple average, which is λ = ( 1

4 ,
1
4 ,

1
4 ,

1
4 ). Then,

3∑
k=0

λkQk = 1
4

3∑
k=0

Qk = − 1
4I.

In forming the augmented Lagrangian, convert the inequality constraints to equality:

qk(x) + sk = 0,

where qk(x) = (x1, x2)Qk
(
x1
x2

)
− x3 and s ≥ 0. Then, the augmented Lagrangian for

λ = ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) is

min La = x3 +
3∑
k=0

(
1
4 (qk(x) + sk) + α(qk(x) + sk)2) : s ≥ 0.

The hessian (in �3) is

∇2La =
[

1
4

∑3
k=0 Qk 0
0 8α

]
=

− 1
4 0 0

0 − 1
4 0

0 0 8α

 ,
which is not positive semi-definite for any α.

The issue is that second-order conditions may not be satisfied with just (NLP.19) and (NLP.20).
Anitescu considers the effects on using the augmented Lagrangian approach of LANCELOT
and the linear convergence of SQP.
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NLP Myth 39. A barrier algorithm is globally convergent if the functions are smooth and
there is a unique stationary point that is the global optimum.

Counterexample. Wächter and Biegler[65] provide the following:

min x1 : x2
1 − x2 = 1, x1 − x3 = 0.5, x2, x3 ≥ 0.

The barrier problem is

min x1 − µ
(

ln(x2) + ln(x3)
)

: x2
1 − x2 = 1, x1 − x3 = 0.5, x2, x3 > 0.

Note that the non-negativity constraints are replaced by positivity constraints. That is
the formal statement of the barrier NLP, but the positivity constraints are ignored (and
sometimes omitted, with risk of confusion) because we must use a continuous-trajectory
algorithm, starting with a feasible point. This excludes, for example, applying the Nelder-
Mead algorithm.

Starting with x0 = (−2, 3, 1), Wächter[64] gives the iterates for a particular barrier algo-
rithm:

The algorithm aborts because the step size becomes too small. (see NLP Myth 37 for the
Maratos effect.)
Wächter and Biegler note that the example has no degeneracy hidden in the equality
constraints, the Jacobian is nonsingular everywhere, and the minimum satisfies second-
order sufficient conditions and is strictly complementary. Hence, the counterexample is
well posed, not some esoteric pathology.

Wächter’s thesis[64] provides a deeper analysis of the above counterexample and shows that
seemingly reasonable barrier algorithms from a generic class cannot be globally convergent
under mild assumptions. The root of the problem is that those methods compute search
directions that satisfy the linearization of the constraints (for example, line-search methods)
and are later cut short to keep the iterates positive. Only algorithms that deviate from
this paradigm (such as certain trust-region or filter methods) can be shown to have good
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convergence properties. See Benson, Shanno, and Vanderbei[5] for further analysis of this
example.

Larry Biegler adds the following points.

1. Failure of this example occurs for barrier methods where the search direction satisfies
linearization of the equality constraints, followed by a line search, using any merit func-
tion (for example, a line-search based Newton method). Because of this restriction and
the need to remain feasible to the bounds, the algorithm eventually terminates because
it is too constrained to find a search direction to reduce the infeasibility of the equalities.
[This is the Maratos effect, which affects SQP and Newton-based methods — see NLP
Myth 37.]

2. Wächter’s thesis mentions that convergence proofs for Newton-based line search bar-
rier methods (from earlier studies) require boundedness of the multipliers (or similar
regularity assumption). This assumption turns out to be violated for this example.

3. There are other barrier methods that can solve this counterexample. For instance, the
trust region method (as in KNITRO) generates search directions that are not restricted
by the constraint linearization, generate search directions that improve the constraint
infeasibility, and avoid this failure of the counterexample.

NLP Myth 40. Suppose NLP is Lagrange regular with solution at x∗, and the quadratic
Lagrangian-approximation algorithm is applied to obtain the direction vector, dk. Then, con-
vergence is superlinear if limk→∞

||xk+dk−x∗||
||xk−x∗|| = 0.

The NLP is of the form min{f(x) : x ∈ �n, g(x) = 0}, where f and g are twice continuously
differentiable and ∇g(x∗) has full row rank. The algorithm defines the direction vector by the
approximation:

min dT∇f(xk) + 1
2d

T∇2
xL(xk, λk)d : g(xk) + dT∇g(xk) = 0,

where ∇2
xL(x, λ) = ∇2f(x)− λ∇2g(x).

Counterexample. Powell[58] provides the following:

f(x) = −x1 + 2(x2
1 + x2

2 − 1) : x2
1 + x2

2 = 1.

The optimal solution is at x∗ = (1, 0) with Lagrange multiplier, λ∗ = 3
2 . Hence,

∇2
xL(x∗, λ∗) =

[
4 0
0 4

]
− 3

2

[
2 0
0 2

]
=
[
1 0
0 1

]
.

For x close to x∗, ∇2
xL(x, λ) is positive definite. Further,

xk =
(

cos θ
sin θ

)
⇒ dk =

(
sin2 θ

− sin θ cos θ

)
.

Choosing θ sufficiently small gives
∣∣∣∣xk − x∗∣∣∣∣ ≈ |θ| and ∣∣∣∣xk + dk − x∗

∣∣∣∣ ≈ 1
2θ

2. Choosing
x0 sufficiently close to x∗ establishes the condition:

lim
k→∞

∣∣∣∣xk + dk − x∗
∣∣∣∣

||xk − x∗||
= 0.
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Further, we have

f(xk) = − cos θ, f(xk + dk) = − cos θ + sin2 θ;
g(xk) = 0, g(xk + dk) = sin2 θ.

This rules out the step size sk = 1 because it worsens both the objective value and the
constraint violation.

The essence of the counterexample is that a unit step size may not be possible even though it
yields superlinear convergence. One would have to accept worsening the objective value and
the constraint violation.

NLP Myth 41. If every optimum in the trajectory of a barrier function satisfies strong
second-order necessary conditions, so does its limit.

Philippe Toint brought this to my attention. The intuition behind the myth is that many
unconstrained algorithms can guarantee convergence to a stationary point that satisfies weak
second-order conditions if each point in the trajectory does. The issue is whether the same
could be said of the strong second-order conditions.

The NLP is min f(x) : g(x) ≥ 0, for which we consider the trajectory of the logarithmic
barrier function:

x∗(µ) ∈ argmin
{
f(x)− µ

∑
i log gi(x) : g(x) > 0

}
for µ > 0.

The myth assumes that x∗(µ) satisfies strong second-order conditions:

hT

[
∇2f(x∗(µ))− µ

∑
i

∇2gi(x∗(µ))
]
h > 0 for all h 6= 0.

Counterexample. Gould and Toint[24] consider the following:

min
x∈�n+

1
2x

TQx,

where Q is symmetric and indefinite. The strong second-order conditions are that the
hessian of the Lagrangian be positive semi-definite over the space of feasible directions,
strengthened by disallowing change in x∗i = 0 when its associated Lagrange multiplier, λi,
is positive:

hTQh ≥ 0 for all h :
{

hi = 0 for x∗i = 0, λi > 0
hi ≥ 0 for x∗i = 0, λi = 0.

(NLP.21)

We apply the logarithmic barrier (which is a special case of [24]). For x > 0:

b(x;µ) = 1
2x

TQx− µ
∑
i log xi (NLP.22)

∇b(x;µ) = Qx− µX−1e (NLP.23)
∇2b(x;µ) = Q + µX−2e, (NLP.24)

where e is a vector of ones and X = diag{xi}.
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Define Q = I − 3
2
z ⊗ zT

||z||2
, where z = e − ne1 and ||•|| is the Euclidean norm. Then,

x∗(µ) = √µ e. This follows from Qe = e:

∇b(x;µ) = 0⇒√µe = µdiag
(

1
√
µ

)
e.

To show that the strong second-order conditions hold, substitute in (NLP.24):

∇2b(x;µ) = 1
2I + 3

2

(
I − z ⊗ zT

||z||2

)
.

This is positive definite, thus satisfying the condition in the myth. However, lim
µ→ 0

x∗(µ) = 0,
and e1 is an admissible direction for the strong second-order conditions. Hence, for the
myth to be true, we require:

0 ≤ e1
TQe1 = 1− 1

2
(e1

T⊗z)2

||z||2
=
n− 3

2 (n− 1)
n

.

This is violated for n ≥ 4.

NLP Myth 42. The central path converges to the analytic center of the optimality region of
a semidefinite program.

This is true for a linear program, but an attempted extension failed to assume a strictly
complementary solution. Halická, de Klerk, and Roos[33] provide the following:

Counterexample.

min x44 :

X =


1− x22 x12 x13 x14

x12 x22 − 1
2x44 − 1

2x33

x13 − 1
2x44 x33 0

x14 − 1
2x33 0 x44

 � 0.

The optimality region consists of all positive semidefinite matrices of the form:

X∗ =


1− x22 x12 0 0
x12 x22 0 0
0 0 0 0
0 0 0 0

 .
In particular, a positive definite optimum is given by setting x22 = 1

2 , x33 = x44 = 1
4 , and

xij = 0 for i 6= j. Its analytic center is

X∗ =


1
2 0 0 0
0 1

2 0 0
0 0 0 0
0 0 0 0

 .
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Halická et al. prove that the central path satisfies

lim
µ↓0

X(µ) =


0.4 0 0 0
0 0.6 0 0
0 0 0 0
0 0 0 0

 .
NLP Myth 43. If an NLP is infeasible, one can sequentially test for the deletion of con-
straints: if its deletion renders the system feasible, keep it; if its deletion maintains the system
infeasible, remove it. What remains is an IIS.

The indicated method is deletion filtering, introduced by Chinneck, to compute an Irreducible
Infeasible Subsystem (IIS). His recent book[13] provides all background analysis, including the
following:

Counterexample. y −
√
x = 0, x ≥ 0, y ≤ −1.

If the algorithm drops x ≥ 0, the solver issues an error message and the algorithm cannot
proceed.

Unlike LP, such logical constraints may be needed in NLP. Another source of failure is the
inability of the NLP solver to determine whether a nonlinear system is feasible. This is more
difficult than for an LP.

NLP Background — Facility Location
The facility location problem has the basic formulation:

min
m∑
i=1

wi
∣∣∣∣x− ai∣∣∣∣ ,

where a1, . . . , am are distinct points in �n and w ≥ 0.

The Fermat-Weber problem is this basic location problem with a Euclidean norm in �2. It is
also of interest to use

∣∣∣∣x− ai∣∣∣∣2, which is a strictly convex, quadratic program. The L1 and
L∞ norms are also of interest and result linear programs.

One extension is to consider p facilities. Let xk ∈ �n be the coordinates of the k th facility.
Then, the basic NLP extends to:

min
m∑
i=1

wid(x, ai) : x ∈ �p×n,

where d(x, ai) = mink=1,...,p
∣∣∣∣xk − ai∣∣∣∣ — that is, customers at ai go to the nearest facility.

This is also called the p-median problem

One may add a cost (or benefit) of placing the facilities far from each other:

min
m∑
i=1

wid(x, ai) +
m∑
i=1

p−1∑
k=1

p∑
j=k+1

vkj
∣∣∣∣xk − xj∣∣∣∣ : x ∈ �p×n.
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Some location problems are defined on a grid, determined by the
convex hull of the demand points. The grid points are called in-
tersection points, introduced by Wendell and Hurter[68]. They
proved that optimal locations for the L1 norm are at intersection
points in the convex hull. The figure at the right is taken from [68].
The filled dots are the intersection points (including the vertices).

Some location problems are defined on a graph, called the network location problem, where the
edges have distances between vertices, and a non-empty subset of vertices is specified as the
set of demand points. Some of this literature is concerned with the p-center problem, where
there are p facilities, and the objective is to minimize the maximum distance:

min
x=(x1,...,xp)

max
i
{d(x, ai)}.

The edge values are assumed to satisfy the elementary distance properties: d(ai, aj) = d(aj , ai) ≥
0 and d(ai, aj) = 0↔ i = j. In some cases, it is also assumed they satisfy the triangle inequal-
ity: d(ai, aj) ≤ d(ai, ak)+d(ak, aj). In this model, the facilities must be located on edges. The
distance from a point to the closest facility is the shortest path from the point to a facility.
For example, the graph to the right has three points, whose pair-wise
distances are shown. With two facilities, located a fourth of the way
along edge [a1, a3] and halfway along [a2, a3],

d(x, a1) = 1, d(x, a2) = d(x, a3) = 2.5,

so maxi{d(x, ai)} = 2.5. An optimal solution is to place one facility
halfway along [a1, a2] and the other at a3. Then,

d(x, a1) = d(x, a2) = 1.5, d(x, a3) = 0,

so maxi{d(x, ai)} = 1.5.

NLP Myth 44. For any polyhedral norm, the optimal location of each facility is in the finite
set of intersection points.

The myth is true for the L1 norm, but not necessarily for any polyhedral norm, introduced by
Ward and Wendell[66].

Counterexample. Michelot[48] provides the following, for a 3-facility problem with the ob-
jective equal to the sum of distances and w, v indicated below.
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Let B(0, 1) be a regular octagon inscribed in a circle centered at
the origin with radius 1, as shown on the right. The associated
polyhedral norm is defined by:

||x|| = inf{λ > 0 : (x/λ) ∈ B(0, 1)}.

To compute ||x|| we solve the inequalities associated with the faces of the octagon:

min λ :
1√
2 λ ≥ − 1√

2x1 +
(

1− 1√
2

)
x2

1√
2 λ ≥

(
1√
2 − 1

)
x1 + 1√

2x2

1√
2 λ ≥

(
1− 1√

2

)
x1 + 1√

2x2

1√
2 λ ≥ 1√

2x1 +
(

1− 1√
2

)
x2

1√
2 λ ≥ 1√

2x1 +
(

1√
2 − 1

)
x2

1√
2 λ ≥

(
1− 1√

2

)
x1 − 1√

2x2

1√
2 λ ≥

(
1√
2 − 1

)
x1 − 1√

2x2

1√
2 λ ≥ − 1√

2x1 +
(

1√
2 − 1

)
x2

Thus,

λ = max



−x1 + (√
2− 1)x2

(1− √
2)x1 + x2

(√
2− 1)x1 + x2

x1 + (√
2− 1)x2

x1 + (1− √
2)x2

(√
2− 1)x1 − x2

(1− √
2)x1 − x2
−x1 + (1− √

2)x2

= max {{|x1|+ (√
2− 1) |x2|, (√

2− 1) |x1|+ |x2|}
= max{|x1|, |x2|}+ (√

2− 1) min{|x1|, |x2|}.

Let a1 = (1, 0), a2 = (3, 0), a3 = 1
2 (3, 5), a4 = (2, 3), and a5 = (0, 1). Then, Michelot’s

NLP is:

min 3√
2

∣∣∣∣x1 − a1
∣∣∣∣+ 2√

2
∣∣∣∣x1 − a2

∣∣∣∣ +
∣∣∣∣x2 − a3

∣∣∣∣+ (1 + 1√
2 )
∣∣∣∣x2 − a4

∣∣∣∣
+ (1 + √

2)
∣∣∣∣x3 − a3

∣∣∣∣+ (1 + √
2)
∣∣∣∣x3 − a5

∣∣∣∣ +
∣∣∣∣x1 − x2

∣∣∣∣+
∣∣∣∣x1 − x3

∣∣∣∣ .
The solution is x1 = (2, 0), x2 = (2, 3), and x3 = (0.5, 1.5), with objective value f(x) =
18.8995.
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The best solution at intersection points is x1 = (2, 0), x2 = (2, 3), and x3 = (1, 1), with
f(x) = 27.8492.

NLP Myth 45. A location model with non-closest facility service has an optimal solution
that locates all facilities at the given points.

Weaver and Church[67] posed the problem of assigning demand points to multiple facilities.
Let dij denote the distance from point i to facility j, for i = 1, . . . , n and j = 1, . . . , p. Let
π(i, j) = k mean that j is the k th closest facility to i. Let ai denote the population at point i,
and let bπ(i,j) denote the fraction of time point i must be serviced by facility j. The problem
is to locate p facilities to minimize

n∑
i=1

ai

p∑
j=1

biπ(i,j)dij .

Counterexample. Hooker and Garfinkel[35] provide the following. Let ai = 1, bi1 = bi3 = 0,
and bi2 = 1, for i = 1, 2, 3. In words, this says that each point is serviced by its second-
closest facility.

Let the coordinates of the given points define an equilateral triangle
with the length of each side equal to 2. Placing the facilities at the
points yields a total cost of 6 — that is,

n∑
i=1

ai

p∑
j=1

biπ(i,j)dij = d12 + d23 + d31 = 6.

Placing the facilities on the mid-point of each side, as shown, yields
a total distance of 3.
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NLP Myth 46. In the p-center problem, for p < n, it is optimal to locate the facilities at
local centers of degree p+ 1 or less.

A local center of degree k is any set of points x∗ that minimizes the maximum distance to the
demand points: {

x∗ : x∗ ∈ argmin
x

max
i∈I
{d(x, ai)}

}
,

where I ⊆ {a1, . . . , an} such that |I| = k. In particular, the local center of an edge (where
|I| = 2) is its midpoint.

Counterexample. Moreno[50] provides the following. Let p = 1, so the myth asserts that the
optimal location of the facility is at one of the edge local centers.

The graph to the right has seven points, and vertex v7
is the optimal location for A = {v1, v2, v3}. However, it
is not a local center for any pair of vertices.

NLP Myth 47. The set of vertices and local centers is a finite dominating set for the p-facility
centdian network problem.

A dominating set for a location problem is a set of points that contains an optimal solution
for all instances of the problem. For network location problems, the set of vertices is a finite
dominating set for the p-median problem, and the set of local centers (as defined by Moreno’s
correction[50] — see NLP Myth 46) is a finite dominating set for the p-center problem. The
p-facility centdian network problem consists of finding the p points that minimize a convex
combination of the p-center and p-median objective functions. The myth asserts that the union
of their dominating sets is a finite dominating set for any convex combination of objective
functions. Indeed, this is true for p = 1.

The model is to minimize

f(x) = λmaxi d(x, ai) + (1− λ)
∑
i d(x, ai),

where λ ∈ [0, 1]. This is a compromise between minimizing the maximum distance (λ = 1)
and the total distance (λ = 0).

Counterexample. Pérez-Brito, Moreno-Pérez, and Rodríguez-Martín[52] provide the follow-
ing.

There are six points, shown on the right, with
the distances shown at each edge. For example,∣∣∣∣a1 − a2

∣∣∣∣ = 6.
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The optimal locations for λ = 0.8 are x1 = 5 ∈ [a1, a2] and x2 = 113 ∈ [a5, a6]. The
optimal objective value is

f(x) = 0.8
∣∣∣∣x1 − a1

∣∣∣∣+ 0.2
(∑4

i=1
∣∣∣∣x1 − ai

∣∣∣∣+
∑
i = 45 ∣∣∣∣x2 − ai

∣∣∣∣)
= 0.8× 5 + 0.2(12 + 10) = 8.4.

Note that x1 is not a vertex or local center, thus violating the myth.

Pérez-Brito et al. propose a new finite dominating set and prove its validity.

NLP Myth 48. The minimum total cost is a (discrete) convex function of the number of
facilities.

The model is the basic form:

f∗(p) = min
{∑m

i=1 wid(x, ai) : x ∈ �p×n
}
.

Brimberg, Mladenović, and Salhi[10] provide the following:

Counterexample. Let a1 = (0, 0), a2 = ( 1
2

√
3,− 1

2 ), a3 = ( 1
2

√
3, 1

2 ), a4 = (− 1
2

√
3, 1

2 ), and
a5 = (− 1

2
√

3,− 1
2 ). Here are the optimal values as a function of p for w = 1:

p f∗(p)
1 4.00
2 2.73
3 2.00
4 1.00
5 0

Here are the optimal facility locations:
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NLP Myth 49. Weiszfeld’s algorithm converges to the optimal solution of the Fermat-Weber
location problem for all but a denumerable number of starting points.

Thanks to Adi Ben-Israel for suggesting this.

Weiszfeld’s algorithm computes xk+1 = T (xk), where

T (x) =


ai if x = ai for some i;∑m

i=1 wi
∣∣∣∣x− ai∣∣∣∣−1

ai∑m
i=1 wi ||x− ai||

−1 otherwise.

Kuhn[38] proposed the myth at a time when Weiszfeld’s algorithm was very popular because
it is so easy to implement.

Note that once x equals one of the given points, the iterates remain at that point — that is,
T (ai) = ai for all i. Thus, x0 = ai is not convergent to an optimum unless ai is optimal.
More generally, we could have T (x) = ai for a non-denumerably infinite number of x. As an
example[12], consider a1 = (1, 0, 0), a2 = (0, 1, 0), a3 = (−1,−1, 0), and a4 = (0, 0, 0). Then,
for w = 1, T (x) = a4 for any x ∈ {(− 1/6 ,− 1/6 , x3) : x3 ∈ �}. a4 is optimal for w = 1, so
Wieszfeld’s algorithm is successful in this case.

Counterexample. Chandrasekaran and Tamir[12] provide the following: a1 = (1, 0, 0), a2 =
(−1, 0, 0), a3 = (0, 0, 0), a4 = (0, 2, 0), and a5 = (0,−2, 0). Let w1 = w2 = w3 = w5 = 1
and w4 = 3. Wieszfeld’s algorithm converges to a3 for x0 ∈ X0, where

X0 =
{

(0, x2, x3) : (x2 + 5
2 )2 + x2

3 = 9
4

}
.
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However, f(a3) = 10 > f(0, 1, 0) = 7 + 2
√

2. To prove T (x0) = a3 for x0 ∈ X0, we have

T (x) = a3 ⇐⇒ 3a4

||x− a4||
+ a5

||x− a5||
= 0

⇐⇒ 6
√

(x2 + 2)2 + x2
3 = 2

√
(x2 − 2)2 + x2

3

⇐⇒
(
x2 + 5

2
)2 + x2

3 = 9
4 .

Chandrasekaran and Tamir conjectured that Kuhn’s convergence criterion holds if the convex
hull of the vertices is of full dimension — that is,

If dim
(
convh{ai}

)
= n, {x : T (x) = ai} is denumerable.

In an effort to prove this, Brimberg[8] extended it to:

Let X0 = {x0 : T (xk) = ai for some k}. Then, X0 is denumerable if, and only if,
dim

(
convh{ai}

)
= n.

This is dispelled by Cánovas, Cañavate, and Marín[11] with the following:

Counterexample. Let a1 = (1, 0, 0), a2 = (0, 1, 0), and a3 = (0, 0, 0). The solution to
T (x) = ai is uniquely x = ai, so |X0| = 1. However, dim

(
convh{ai}

)
= 2 < n = 3.

Cánovas et al. provide deeper insights into the flaws.

Note: Brimberg and Love[9] proved convergence of Weiszfeld’s algorithm for the L∞ norm.
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Multiple-Objective Programming
The multiple-objective mathematical program has the range of the objective function in �N
with N > 1. An optimal solution is defined as follows. A point x ∈ X is dominated by x′ ∈ X
if f(x′) ≥ f(x) and fi(x′) > fi(x) for some i. (Reverse the inequalities for minimization.) A
Pareto-optimum is a feasible solution that is not dominated. This is denoted:

Pareto-max f(x) : x ∈ X, g(x) ≤ 0, h(x) = 0.
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The Pareto frontier is the set of Pareto-optima, denoted

argPareto-max{f(x) : x ∈ X, g(x) ≤ 0, h(x) = 0}.

One way to generate a Pareto-optimal solution is by taking a strictly-positive combination of
the objective functions and solving:

max
∑N
i=1 wifi(x) : x ∈ X, g(x) ≤ 0, h(x) = 0,

where w > 0. This is sometimes called the weighted-objective model, and each optimal solution
is Pareto-optimal. Typically, but not always, the weights are normalized by

∑N
i=1 wi = 1.

For a multiple-objective standard Linear Program (LP), the form is given by:

Pareto-max Cx : Ax = b, x ≥ 0,

where C is N × n.

See Zeleny[32] and Steuer[28] for MOP basics.

MOP Myth 1. For LP, the Pareto frontier is a convex set.

Counterexample. The following has its Pareto frontier along the two edges defined by 2x1 +
x2 = 2 and x1 + 2x2 = 2, respectively. In particular, points (1, 0) and (0, 1) are Pareto-
optimal, but their midpoint, ( 1/2 , 1/2 ), is dominated by ( 2/3 , 2/3 )

Pareto-max
{
x1
x2

}
: x ≥ 0

2x1 + x2 ≤ 2
x1 + 2x2 ≤ 2

.

More interesting examples are given by Dybvig and Ross[7].

MOP Myth 2. Varying the weights of a convex combination of objectives generates the
Pareto frontier.

Although it is trivial to show that a solution to the weighted-objective (with w > 0) is a
Pareto-optimum, the myth asserts the converse: each Pareto-optimum can be generated by
some positive weight.

The problem is the same as the duality gap. In
particular, the Lagrangian has a duality gap
when the optimal response function is not con-
vex (for minimization). That is what happens
when the Pareto frontier does not produce a
convex function in f1-f2 space. (See figure on
right.)
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Counterexample. Das and Dennis[6] provide the following:

Pareto-min
{

f1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5,

f2(x) = 3x1 + 2x2 − 1
3x3 + 0.01(x4 − x5)3}

}
:

x1 + 2x2 − x3 − 0.5x4 + x5 = 2
4x1 − 2x2 + 0.8x3 + 0.6x4 + 0.5x2

5 = 0
x2

1 + x2
2 + x2

3 + x2
4 + x2

5 ≤ 10.

The essential features of the counterexample are:

1. the objectives are in conflict — that is, f2 is a decreasing function of f1 in the range
space;

2. the Pareto frontier (f1–f2 curve) lacks a linear support in some region.

A simpler counterexample is thus:

Pareto-max

 x

1
1 + x

 : 0 ≤ x ≤ 1.

The weighted-objective problem is

max w1x+ w2
1

1 + x
: 0 ≤ x ≤ 1,

where w > 0 and w1 + w2 = 1.

Every feasible point is Pareto-optimal, but only the extreme points, {0, 1}, can be generated
by varying the weights. For w1 >

2
3 , the weighted-objective solution is at x = 1; for w1 <

2
3 , it

is at x = 0. For w1 = 2
3 , both extreme points are optimal, but no point in the interior, (0, 1),

is ever optimal in the weighted-objective model.

This is the same property as the Lagrangian duality gap, viewed in response space. Specifically,
consider the parametric program:

max f2(x) : x ∈ X, f1(x) ≥ b,

where both f1 and f2 are increasing and continuous on X, which is compact. This yields the
Pareto frontier as b is varied in

[
minx∈X f1(x), maxx∈X f1(x)

]
. The associated Lagrangian

problem is
L∗(λ) = max{f2(x) + λf1(x) : x ∈ X},

for λ ≥ 0. Since f is convex, the solution occurs at an extreme point:

L∗(λ) = max
0≤x≤1

{
1

1+x + λx
}

= max{1, 1
2 + λ};

x∗(λ) =


0 if λ < 1

2

1 if λ > 1
2

0, 1 if λ = 1
2 .
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The Lagrangian dual is to minimize L∗(λ) − λb on �+. In response space, the Lagrangian is
a linear function, so there is a duality gap whenever there is no linear support for the optimal
value function:

f∗(b) = max f2(x) : x ∈ X, f1(x) ≥ b

onB = {b : fx(x) ≥ b for some x ∈ X}. In particular, 6∃λ ∈ �+ such that x∗ ∈ argmax{f2(x)+
λf1(x) : x ∈ X} for any x∗ ∈ (0, 1).

The Lagrangian problem corresponds to the weighted objective with w1 = 1
1+λ and w2 = λ

1+λ .
The inability to generate a region of the Pareto frontier is precisely the Lagrangian duality
gap.

MOP Myth 3. Points obtained by computing individual-objective maxima bound the range
of objective values over the Pareto frontier.

My thanks to Wlodzimierz Ogryczak for suggesting this.

The idea is that we first compute

fmax
i = max{fi(x) : x ∈ X} for i = 1, . . . , N⇒Xmax =

N
∪
i=1

argmax{fi(x) : x ∈ X}.

This yields

fmin
i = min{fi(x) : x ∈ Xmax} for i = 1, . . . , N.

The myth asserts fmin ≤ f(x) ≤ fmax for all x ∈ X∗. The upper bound is valid, but fmin

need not be a valid lower bound. Ogryczak provided the following

Counterexample. Pareto-max

x1
x2
x3

 : x ∈ X, where

X = {(10, 3, 3), (3, 10, 3), (3, 3, 10), (1, 8, 8), (8, 1, 8), (8, 8, 1)}.

Since no x ∈ X is dominated, the Pareto frontier, X∗, equals X. The individual-objective
maxima are computed:

fmax
i = max{xi : x ∈ X∗} = 10 for i = 1, 2, 3⇒Xmax = {(10, 3, 3), (3, 10, 3), (3, 3, 10)}.

This yields

fmin
i = min{xi : x ∈ Xmax} = 3 for i = 1, 2, 3.

The myth asserts 3 ≤ fi(x) ≤ 10 for all x ∈ X∗ and all i. However, f1(x4) = f2(x5) =
f3(x6) = 1.

Counterexample. Korhonen and Wallenius[17] provide an LP counterexample:
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Pareto-max

x1
x2
x3

 : x ≥ 0

x1 + x2 + x3 ≤ 4
0.05x1 − 0.05x2 + x3 ≤ 2

x1 − 0.05x2 + 0.05x3 ≤ 2

The Pareto frontier (shaded diamond) is the convex hull of the four points indicated:

X∗ = convh{(0, 1.9048, 2.0952), (2.0952, 1.9048, 0), (0, 4, 0), (1.913, 0.1739, 1.913)}.

Computing fmax, we obtain

fmax
1 = 2.0952 = f1(2.0952, 1.9048, 0)
fmax

2 = 4 = f2(0, 4, 0)
fmax

3 = 2.0952 = f3(0, 1.9048, 2.0952)

⇒ fmin = (0, 1.9048, 0)

However, x = (1.913, 0.1739, 1.913) ∈ X∗ violates f2(x) ≥ fmin
2 .

MOP Myth 4. Adding an objective function expands the set of Pareto-optima.

Let X∗N be the set of Pareto-optima for f = (f1, . . . , fN )T. The Myth asserts X∗N ⊆ X∗N+1.

Counterexample. Lowe, Thisse, Ward, and Wendell[20] provide the following. Let f1 have
two maxima, x1 and x2, such that f2(x1) < f2(x2). Then, x1 ∈ X∗1 but x1 6∈ X∗2 .

MOP Myth 5. Consider the multiple-objective convex program:

Pareto-min f(x) : x ∈ �n, g(x) ≤ 0,

where f and g are convex and differentiable. Then, x∗ is a Pareto-optimal if g(x∗) ≤ 0, and
there exists w, λ ≥ 0 such that λg(x∗) = 0 and

w∇f(x∗) + λ∇g(x∗) = 0.

The basis for this is that these are the Lagrangian (Kuhn-Tucker-Karush) conditions for the
weighted model. (The sufficiency is due to the convexity assumptions.)

Counterexample. Kim et al.[16] provide the following:

Pareto-min
{
x1
x2

}
: x1 ≥ 0, x1(x1 − 1) ≤ x2.

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]



Page 162 February 20, 2010 MOP Myths

Consider x∗ = (0, 1). This is not a Pareto-optimum because it is dominated by (0, 0). Let
w = λ = (1, 0), so the conditions stated in the myth are satisfied with:

(1, 0)
[

1 0
0 1

]
+ (1, 0)

[
−1 0
−1 −1

]
=
(

0
0

)
.

MOP Myth 6. Consider a multiple-objective LP in standard form. A Pareto-maximum can
be obtained from a weighted objective, where the weights (w) are obtained from a solution to:

min bTu : uTA− wC ≥ 0, w ≥ 1.

Isermann[14] proposed this with the intuition that this is a sort-of dual to the original Pareto-
maximum in the sense that the weighted objective wCx yields this LP (but with w fixed).
The goal here is to obtain some initial Pareto-maximum, then find others.

Counterexample. Ecker and Hegner[8] provide the following:

Pareto-max
(
−x1
x4

)
: x ≥ 0,

x1 − x2 = 1
x1 + x3 = 2

x4 = 1

A Pareto-maximum is x = (1, 0, 1, 1). The LP to obtain the weights is given by:

min u1 + 2u2 + u3 : w1, w2 ≥ 1
u1 + u2 + w1 ≥ 0
−u1 ≥ 0

u2 ≥ 0
u3 − w2 ≥ 0

This is unbounded because we can let (u,w) = (−2t, 0, t, 2t, t), which is feasible for all
t ≥ 1. The minimand is −t, which diverges to −∞ as t→∞.

Ecker and Kouada[9] give the correct result as follows. Suppose Cx0 6= 0 for some feasible x0.
Then, there exists a Pareto-maximum if, and only if, the following LP has an optimum:

max
∑N
i=1 si : Cx = s+ Cx0, Ax ≤ b, x, s ≥ 0.

(Omitting Cx0, the dual is Isermann’s LP. The counterexample shows that Cx0 cannot be
omitted.)

In the counterexample, x0 does not exist because Cx 6= 0 for any feasible x. See Benson[4] for
additional discussion and another way to get an initial Pareto-maximum that is an extreme
point of the feasible polyhedron.
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MOP Myth 7. Let U be an increasing utility function on the range of f on X, and

max U(f(x)) : x ∈ X.

Then, an extreme point with greatest utility value is Pareto-optimal.

Steuer[28, p. 157] provides the following:

Counterexample.

Pareto-max
{
x1
x2

}
:

x1 + x2 ≤ 18
8x1 + 6x2 ≥ 112
5x1 + 7x2 ≥ 96

x ≥ 0.

Figure taken from [28].

This has three extreme points:

x1 = (2, 16), x2 = (15, 3), x3 = (8, 8).

x3 is not Pareto-optimal because it is dominated by the non-extreme point (9, 9). However,
for U(f1, f2) = f1f2, x3 has the greatest utility value (64); the two Pareto-optimal extreme
points have lower utility values:

U(f(x1)) = 32, U(f(x2)) = 45.

MOP Myth 8. In a multiple-objective LP, one should put the greatest weight on the most
important objective.

Steuer[28, p. 198–9] provides the following:

Counterexample.

Pareto-max

 2x1 + 4x2
3x1 − 3x2

5x2

 :
x ≥ 0, x2 ≤ 12
3x1 + 5x2 ≤ 72
3x1 − 5x2 ≤ 12
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Figure taken from [28].

Assume the objectives are in order of importance, and consider the following two weights:
w1 = (0.7, 0.2, 0.1) and w2 = (0, 0.1, 0.9). The first weight reflects the relative importance
of the objectives and generates the Pareto-optimum point x1 = (14, 6), with objective
values (52, 33, 30). The second one is contrary to the relative importance and generates the
Pareto-optimum point x2 = (4, 12), with objective values (56,−24, 60).
These are counter-intuitive results because x2 better reflects the objectives’ relative im-
portance. The outcome, particularly the latter, where x1 is the solution, is due to the
correlation between c1 and c3. By placing a large weight on c3, it is not necessary to place
a high weight on c1.

MOP Myth 9. All Pareto-optimal solutions are equal.

The issue is that of value trade-off, say between two objectives that are in conflict. In particular,
suppose f1 is cost and f2 is risk. Keeney[15] provides the following:

Counterexample. Suppose it costs $3 billion annually if carbon monoxide concentrations
are limited to 3 parts per million, and suppose that it costs $6 billion if concentrations are
held to 2 parts per million. We must ask, “Is it worth $3 billion to lower concentrations
from 3 parts per million to 2 parts per million?” The appropriate way to address this
is to model the causal relationship between pollutant concentrations and potential health
effects. Then, one could deal directly with the value trade-offs between cost of the national
air quality standard and the health effects averted.
The two Pareto-optima solutions are not equal, but the model focused attention on them
for further analysis.

By its definition, points on the Pareto frontier are indifferent to each other as far as the model
is concerned. Applying multiple-objective programming to decision-making, however, we must
go beyond finding points on the Pareto frontier. Also, MOP Myth 8 demonstrates that using
weights may not resolve the issue. It is important that Pareto-optima help to focus what can
be achieved, but ultimately there is a trade-off in the value of one Pareto-optimum versus
another. That trade-off could be subjective or with refined analysis. Keeney gives details on
this, citing 12 common mistakes in making value trade-offs.

Also see Zeleny[33] and his references.
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MOP Background — Pareto-optimum Graph
The following benefitted from comments by Jochen Gorski.

Define a Pareto-optimum graph whose nodes correspond to some finite set of Pareto-optimum
solutions and whose edges correspond to their adjacency. The notion of the finite set of
solutions and of their adjacency are not defined in general. For LP, it is natural to define
Pareto-optimal adjacency the same as in LP: the nodes are basic optimal solutions, and their
adjacency is that of their bases. For combinatorial problems, it is natural to use underlying
combinatorial structures. For example, two spanning trees are adjacent if they differ by one
edge (having n− 2 edges in common).

The significance of a Pareto-optimum graph is its connectedness, raising the question if one
can traverse the nodes without having to compute a solution that is not Pareto-optimal. If so,
this enables neighborhood search to produce them. (See Gorski, Klamroth, and Ruzika[12] for
a substantive description of this concept and an up-to-date review of results.)

MOP Myth 10. The Pareto-minimum graph for spanning trees is connected.

Ehrgott and Klamroth[10] provide the following:

Counterexample. The edge numbers are the costs of two objectives. In particular, (0, 0) is
an edge with zero cost in both objectives, as the edge (s1, s11).

Figure taken from [10].

The following table lists the 12 Pareto-minimum spanning trees, showing the edges with
positive costs (all edges with zero cost are in each tree).
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Pareto-minimum Objective
Tree Edges with Non-zero Cost Values
T1 (s13, s2), (s22, s3), (s31, s4) (1, 28)
T2 (s13, s2), (s22, s3), (s33, s4) (2, 24)
T3 (s13, s2), (s23, s3), (s31, s4) (8, 22)
T4 (s13, s2), (s23, s3), (s33, s4) (9, 18)
T5 (s13, s2), (s21, s3), (s33, s4) (12, 17)
T6 (s11, s2), (s23, s3), (s33, s4) (12, 17)
T7 (s11, s2), (s21, s3), (s33, s4) (17, 16)
T8 (s12, s2), (s22, s3), (s32, s4) (20, 15)
T9 (s13, s2), (s23, s3), (s32, s4) (27, 14)
T10 (s13, s2), (s21, s3), (s32, s4) (28, 9)
T11 (s11, s2), (s23, s3), (s32, s4) (36, 7)
T12 (s11, s2), (s21, s3), (s32, s4) (39, 6)

Tree T8 is not adjacent to any other Pareto-minimum spanning tree.

An implication is that to visit each Pareto-minimum spanning tree, we may need to visit
a non-optimal spanning tree during the pivoting process. See Przybylski, Gandibleux, and
Ehrgott[26] for how this invalidates a class of algorithms that seek to generate Pareto-optimal
spanning trees and shortest paths.

MOP Myth 11. The Pareto frontier is closed.

The result is true for LP, but Kornbluth and Steuer[18] provide the following for a fractional
program:

Counterexample.

Pareto-max


x1 − 4
3− x2
−x1 + 4
x2 + 1
−x1 + x2

 :
−x1 + 4x2 ≤ 0
x1 − 1

2x2 ≤ 4
x ≥ 0

x1 = (0, 0) x2 = (1, 0)
x3 = ( 4/3 , 1/3 ) x4 = (4, 0)
x5 = (4, 1) x6 = ( 32/7 ,

8/7 )

The feasible region is the convex hull of the extreme points, denoted convh{x1, x4, x6}.
The objective values for each of the points are:
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f(x1) =

− 4/3
4
0

 f(x2) =

−1
3
−1



f(x3) =

−1
2
−1

 f(x4) =

 0
0
−4



f(x5) =

 0
0
−3

 f(x6) =

 4/13
− 4/15
− 24/7

 .

The Pareto frontier is given by the union of convex hulls minus two half-open line segments:

X∗ = convh{x2, x3, x4, x5} ∪ [x1, x2] ∪ [x5, x6]− (x2, x3]− [x4, x5),

where − denotes the set-minus. Points x3 and x4 are not Pareto-optimal, but they are
in the closure of X∗. In particular, x3 is dominated by x2, but all feasible points on
{(x3, x3 + (ε, 0)) : ε > 0} are not dominated — they are Pareto-optimal. Thus, x3 is a
cluster point of X∗, so X∗ is not closed.

MOP Myth 12. If the Pareto frontier contains an interior point, it must contain all interior
points.

The result is true for LP, but the fractional program given by Kornbluth and Steuer[18] in
MOP Myth 11 provides the following:
Counterexample. Interior points in convh{x2, x3, x4, x5} are Pareto-optimal, but those in

convh{x1, x2, x3} ∪ convh{x4, x5, x6} are not.

MOP Myth 13. The Pareto frontier is edge-connected.

The result is true for LP, but the fractional program given by Kornbluth and Steuer[18] in
MOP Myth 11 provides the following:
Counterexample. Points x1 and x6 are Pareto-optimal, but they are not edge-connected

because the edge (x2, x3] is not in X∗ (neither is [x4, x5)).

MOP Background — Lexico-optima and Bilevel Programs
Another way to generate Pareto-optimal solutions is by ordering the objective functions and

solving sequentially. Suppose f1 � f2 � · · · � fN . Then, the lexico-optimum model is given
by:

X1 = argmax{f1(x) : x ∈ X}
X2 = argmax{f2(x) : x ∈ X1}
...
XN = argmax{fN (x) : x ∈ XN−1}
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(The sequence stops if it is initially infeasible or encounters an unbounded solution.) The
points in XN are Pareto-optimal, with f lexio-graphically ordered: f(x∗) � f(x) for x∗ ∈ XN

and x ∈ X. (See Sherali and Soyster[27].)

As a practical matter, the sequence is modified by tolerances that allow a small amount of sub-
optimality, which often results in Xk containing more than one point — that is, near-optimal
solutions. Given τ = (τ1, . . . , τN ) ≥ 0,

z1 = max{f1(x) : x ∈ X} X1 = {x ∈ X : f1(x) ≥ z1 − τ1}
z2 = max{f2(x) : x ∈ X1} X2 = {x ∈ X1 : f2(x) ≥ z2 − τ2}
...

...
zN = max{fN (x) : x ∈ XN−1} XN = {x ∈ XN−1 : fN (x) ≥ zN − τN}

Related to N = 2, we have the bilevel mathematical program:

max f2(x, y∗) : x ∈ X, y∗ ∈ argmax{f1(x, y) : y ∈ Y (x)}.

This also represents the ordered preference f1 � f2, but the inner optimality constraint is a
restriction that y∗ be optimal in the priority objective, whereas the lexico-optimum second
problem would include x as:

max f2(x∗, y∗) : (x∗, y∗) ∈ argmax{f1(x, y) : x ∈ X, y ∈ Y (x)}.

See MOP Myth 16 to avoid thinking the bilevel solution is the Pareto-optimum:

Pareto-max
{
f1(x, y)
f2(x, y)

}
: (x, y) ∈ X ,

where X = {(x, y) : x ∈ X, y ∈ Y (x)}. Also, see Fliege and Vicente[11] for a recent analysis
of how bilevel optima relate to Pareto-optima.

MOP Myth 14. Every Pareto-optimum is a solution to the lexico-optimum of some lexico-
ordering.

Counterexample. Consider

Pareto-max
(
x
y

)
: x, y ≥ 0, 2x+ y ≤ 2, x+ 2y ≤ 2.

Using the given order, we first maximize x and obtain X1 = {(1, 0)}. Since this is unique,
the generated Pareto-optimum is (1, 0). Reversing the order, we maximize y and obtain
X1 = {(0, 1)}. Again, since this is unique, the generated Pareto-optimum is (0, 1). Thus,
the generated solutions are two points, but the Pareto frontier contains the point ( 2/3 , 2/3 )
(generated by weights w = ( 1/2 , 1/2 )).
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MOP Myth 15. If the inner optimization of a bilevel program has an optimal solution for
each x, and the outer maximization objective is continuous and bounded, the bilevel program
has an optimal solution.

Counterexample. Bard and Falk[2] provide the following:

min x1(2y∗1 + 3y∗2) + x2(4y∗1 + y∗2) : x ≥ 0, x1 + x2 = 1
y∗ ∈ argmax

{
(x1 + 3x2)y1 + (4x1 + 2x2)y2 : y ≥ 0, y1 + y2 = 1

}
.

Solving the inner maximization for x = (v, 1− v) ≥ 0,

y∗(v) =


(1, 0) if v < 1

4

{(ζ, 1− ζ) : 0 ≤ ζ ≤ 1} if v = 1
4

(0, 1) if v > 1
4

Thus, the bilevel program reduces to:

min f(v) : 0 ≤ v ≤ 1,

where

f(v) =


4− 2v if v < 1

4

[1.5, 3.5] if v = 1
4

1 + 2v if v > 1
4

The mapping, f , is not a function; it is vertical at v = 1
4 . If the inner optimization is

viewed adversarial (and x, y represent mixed strategy solutions in a game), the value of
y∗ can be any member of {(ζ, 1 − ζ) : 0 ≤ ζ ≤ 1}, in which case f( 1

4 ) = 3.5, preventing
achievement of the minimum value of 1.5. As a practical matter, Bard and Falk suggest
that x could be chosen with some perturbation: x =

(
1
4 + ε, 3

4 − ε
)
, and let ε ↓ 0. Then,

the objective value approaches the minimum value (with y∗ = (0, 1)), but it cannot attain
this value for any particular x.

The real lesson is to be careful in the interpretation of the two levels. Alternative optima to
the inner optimization poses a problem for the game-theoretic interpretation. However, taken
literally, y∗ is a variable in the outer optimization, constrained by the inner maximization.
With that interpretation, the optimal solution is x∗ = ( 1

4 ,
3
4 ), y∗ = (0, 1).

Bard and Falk offer more insights into bilevel programming and its pitfalls.
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MOP Myth 16. A solution to the bilevel mathematical program can be found with some
weighted objective solution.

The myth says there exists w ∈ [0, 1] such that a solution to the bilevel mathematical program
is found by solving:

max wf1(x, y) + (1− w)f2(x, y) : x ∈ X, y ∈ Y (x).

Counterexample. Haurie, Savard, and White[13] provide the following:

max −x− 5y∗ : x ≥ 0,
y∗ ∈ Y (x) = argmax{y : y ≥ 0

x + y ≥ 8
−3x + 2y ≤ 6

3x + 4y ≤ 48
2x − 5y ≤ 9}.

The optimal bilevel solution is at (x∗, y∗) = (12, 3), but a weighted-objective solution is
given by other extreme points of the polyhedron. Here are the weighted-objective solutions
for ranges of w:

w-range optimal extreme point
0 ≤ w ≤ 0.15 (2, 6)
0.15 ≤ w ≤ 0.20 (4, 9)
0.20 ≤ w ≤ 1 (7, 1)

The only extreme point with a greater value of the first-level objective is (7, 1), but
1 6∈ Y (7), so it is not feasible in the bilevel model. The bilevel solution (12, 3) is not
a solution to any of the weighted-objective models. If it were, it would be Pareto-optimal;
Haurie et al. point out that bi-criteria solutions are generally not Pareto-optimal.

Also see the counterexamples by Candler[5] , Wen and Hsu[31]. Further, the counterexample
by Ben-Ayed and Blair[3] is for the Grid Search Algorithm, which rests on this myth. See
Marcotte[21] for a counterexample to a solution for the equilibrium network design problem
based on the same myth.

MOP Myth 17. An optimal solution to the linear bilevel program is either Pareto-optimal,
or it solves the outer LP.
Counterexample. Wen and Hsu[31] provide the following:

max f2(x, y) = −2x+ 11y : x ≥ 0,
y∗ ∈ argmax{f1(y) = −3y : y ≥ 0,

x − 2y ≤ 4
2x − y ≤ 24
3x + 4y ≤ 96
x + 7y ≤ 126

−4x + 5y ≤ 65
x + 4y ≥ 8}.
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The bilevel solution is at (x∗, y∗) = 1
11 (192, 120). It is not Pareto-optimal because it is

dominated by (x, y) = 1
11 (19, 108) with the objective values:

f(x∗, y∗) = (−32.727, 85.091)T< f(x, y) = (−29.45, 104.55)T.

The myth asserts that (x∗, y∗) must solve the “outer LP:”

max −2x+ 11y : x, y ≥ 0
x − 2y ≤ 4

2x − y ≤ 24
3x + 4y ≤ 96
x + 7y ≤ 126

−4x + 5y ≤ 65
x + 4y ≥ 8}.

The optimal solution is (x, y) = (5.333, 0.667) with f2(x, y) = −8.667 > f2(x∗, y∗) =
−32.727.

MOP Myth 18. A linear bilevel optimum is Pareto-optimal if the coefficient vectors of the
inner variable forms an acute angle.

The linear bilevel program is:

max cx+ dy∗ : x ≥ 0, Ax ≤ b, y∗ ∈ argmax{fy : y ≥ 0, Fx+Gy ≤ g}.

The myth asserts that if (x∗, y∗) is a bilevel optimum, it is Pareto-optimal if df T> 0.

The intuition behind this is as follows. From 1983[1]–1988[5, 21] it was believed that the linear
bilevel program is Pareto-optimal for:

max
(
cx+ dy
fy

)
: x, y ≥ 0, Ax ≤ b, Fx+Gy ≤ g.

The rationale is that weights can purportedly be established using the Lagrange (Karush-
Kuhn-Tucker) conditions, so that the bilevel program must solve

max λ(cx+ dy) + (1− λ)fy : x, y ≥ 0, Ax ≤ b, Fx+Gy ≤ g

for some λ ∈ [0, 1]. Before that myth was dispelled (see MOP Myth 16), Ünlü[30] proceeded
to correct this by pointing out that Pareto-optimality is not ensured for λ = 1, resulting in
MOP Myth 17. That case is the outer LP — Wen and Hsu[31] gave a counterexample to show
that this is not always true. Applying the Kuhn-Tucker conditions, they proposed that Ünlü’s
theorem is true if df ≥ 0.

Counterexample. Marcotte and Savard[22] provide the following:

max f2(x, y) = −x− 2y1 − 2y2 : x ≥ 0, x ≤ 1,
y∗ ∈ argmax{f1(y) = y1 − 2y2 : y ≥ 0, x+ y1 ≤ 2}.

We have df T = (2, 2)(−1, 2)T > 0. The bilevel optimum is at (1, 1, 0) This is not Pareto-
optimal because it is dominated by (x, y) = (0.5, 1.1, 0) with f1(x, y) = −2.7 > f1(x∗, y∗) =
−3 and f2(x, y) = 1.1 > f2(x∗, y∗) = 1.
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MOP Myth 19. A solution to the minimax goal programming model, with individual optima
as an objective reference point, is Pareto-optimal.

Let f∗i = max{fi(x) : x ∈ X}. The associated minimax goal program is:

min
x∈X

max
i
{wisi} : f(x) + s = f∗, s ≥ 0,

where w is the weight vector.

Counterexample. Ogryczak[25] provides the following:

Pareto-max

x1
x2
x3

 : x ∈ X = {x ∈ �3
+ : x1 + x2 ≤ 2, 1.5 ≤ x3 ≤ 2}.

The Pareto frontier is X∗ = {x ∈ �3
+ : x1 + x2 = 2, x3 = 2}, and f∗ = (2, 2, 2). The

corresponding minimax goal program with wi = 1 for all i is:

min z : x, s ≥ 0, x1 + x2 ≤ 2, 1.5 ≤ x3 ≤ 2
z ≥ si and xi + si = 2 for i = 1, 2, 3.

The optimality region for this is XGP = {(1, 1, x3) : 1.5 ≤ x3 ≤ 2}. The only Pareto-
optimum point is (1, 1, 2).
To ensure that the minimax goal program generates a Pareto-optimum, add the weighted-
sum[24]:

lexico-min
(

maxi{wisi}∑
i wisi

)
: x ∈ X, f(x) + s = f∗.

This yields the unique solution, (1, 1, 2), which is Pareto-optimal (and solves the minimax
goal program).

The GP optimality region generally contains dominated points (non-Pareto-optimal), such as
{(1, 1, 2− ε)} in the example. Be sure to see Tamiz, Jones, and Romero[29] for a clarification
of the conditions under which the myth’s statement is valid.

MOP Myth 20. The Parametric Complementary Pivot algorithm obtains a bilevel solution.

Counterexample. Ben-Ayed and Blair[3] provide the following:

max 1.5x+ 6y∗1 + y∗2 : 0 ≤ x ≤ 1
y∗ ∈ argmax{y1 + 5y2 : y ≥ 0, x+ 3y1 + y2 ≤ 5, 2x+ y1 + 3y2 ≤ 5}.

The PCP algorithm searches for a solution to the feasibility and complementary slackness
conditions:

x+ 3y1 + y2 + s1 = 5
2x+ y1 + 3y2 + s2 = 5

x+ s3 = 1

0.01y1 + 3u1 + u2 − t1 = 1
0.01y1 + u1 + 3u2 − t2 = 5

x, y, s, t, u, z ≥ 0.

1.5x+ 6y1 + y2 − z = 2
yt = u(s1, s2)T = 0
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The algorithm starts by ignoring the inner maximization (but does satisfy the constraints).
That solution is x = 0 and y = (1.667, 0), with s = (0, 3.333, 1). The complementary
slackness conditions require t1 = 0 and u = (0.328, 0). The middle equation then yields
t2 = .01667 + 0.328− 5 < 0, so an artificial variable, w, is introduced:

0.01y1 + u1 + 3u2 − t2 + w = 5.

Entering x, y2, u2, s1, or t1 decreases w. However, u2 cannot enter because s2 > 0; similarly,
neither s1 nor t1 can enter. If we choose y2 to enter, s2 leaves. At the next step, we may
have u2 enter (u1 leaves), then s1 enters to produce the system:

y1 + 0.147x− 0.059s2 − 0.176z = 0.059.

At this point, the PCP algorithm stops with the conclusion that the system has no solution.
However, a solution is: x = 1, y = (0, 1), s = (3, 0, 0), u = (0, 1.663), t = (0.663, 0), z = 0.5.

Ben-Ayed and Blair prove that the bilevel LP is NP-hard, so no polynomial algorithm can
ensure optimality (unless P = NP ).

MOP Myth 21. A Kuhn-Tucker point of the weighted-objective bilinear program associated
with a linear complementarity problem (LCP) is a solution to the LCP.

Given an n× n matrix M and n-vector q, the linear complementarity problem is

min x′y : (x, y) ∈ S def= {(x, y) ∈ �2n
+ : y = Mx+ q}.

A complementary solution is when x′y = 0. Kostreva and Wiecek[19] approached this as a
multiple-objective program:

Pareto-min

x1y1
...

xnyn

 : (x, y) ∈ S.

The MOP is equivalent to the LCP when it has a complementary solution.

Now consider the weighted-objective bilinear program:

P (w,M, q) : min
n∑
i=1

wixiyi : (x, y) ∈ S,

for w ≥ 0. For w 6> 0, it is easy to generate solutions that are not complementary (that is,
letting xiyi > 0 for wi = 0). The myth asserts that a Kuhn-Tucker point for w > 0 is a
solution to the LCP.
Counterexample. Mohan, Neogy, and Das[23] provide the following:

M =

 1 −3 0
−3 5 2

2 −5 0

 and q =

 0
1
−3

 .

The LCP (M, q) solution is x = (9, 3, 5.5)T, y = 0, which is complementary. For w1 =
w2 = w3 = 1, a Kuhn-Tucker point of P (w,M, q) is x = (1.5, 0, 1.8) and y = (1.5, 0.1, 0)
(with multipliers for the linear constraints: λ = (1.5, 0, 1.8).) Since x1y1 > 0, this is not
complementary and hence not a solution to LCP (M, q).
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Many algorithms converge to a Kuhn-Tucker point and cannot guarantee it is a global mini-
mum. Since the objective in P (w,M, q) is not convex, it can have multiple Kuhn-Tucker points
that are not minima — that is, not complementary.
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Special Forms of Mathematical Programs
This section presents some myths and counterexamples for mathematical programs that do
not fit easily into one of the other sections, notably some particular applications.

SF Myth 1. A good cluster results from maximizing inter-cluster distances and minimizing
cluster diameters.

Counterexample. The following is taken from Climer and Zhang[8].
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Using Euclidean distance as the similarity measure for (a), the “intuitive cluster” is (b).
The myth fails because many points are closer to a different cluster than their own (so the
diameters are not minimized), and the distance between clusters is less than maximal.

SF Myth 2. A chance-constraint stochastic program has a solution if its certainty equivalent
has a solution.

The model is given by:

max E[f(x; θ)] : x ∈ X, Pr[g(x; θ) ≤ 0] ≥ α,

where θ is a vector of uncertain parameters and α ∈ (0, 1). In words, this seeks a policy to
maximize the expected value of the objective, subject to it being feasible with probability at
least α. The probability and expected value operators are generally taken with respect to θ,
and x is a pure strategy solution.

Greenberg[15] pointed out that one could allow mixed-strategy solutions, in which case the
chance constraint could be violated a certain percentage of time. The model becomes:

max
H

∫
x∈X

∫
θ

f(x; θ)dF (θ)dH(x) : Pr[g(x; θ) ≤ 0] ≥ α,

where H is a distribution function on X, subject to choice. The chance constraint is now a
joint probability with respect to (x, θ). (Since x is selected before θ is known, the events are
independent; hence, we see the product of their distributions.)

Counterexample. Suppose
∫
θ
f(x; θ)dF (θ) is unbounded over X: ∃{xk} ⊆ X such that∫

θ
f(xk; θ)dF (θ) ↑ ∞. Let x0 be any always-feasible solution — that is, g(x0, θ) ≤ 0 for all

θ, and choose H such that Pr[x = x0] = α, thus satisfying the chance constraint regardless
of how we assign the remaining probability, 1 − α. Let {φk}k≥1 be any series such that
φk ↓ 0,

∑
k φk = 1− α, and ∑

k

φk

∫
θ

f(xk; θ)dF (θ)→∞.

(Could be φk = K∫
θ
f(xk;θ)dF (θ)

for the appropriate constant, K > 0.) Then, the objective

is unbounded though the chance constraint is satisfied by the randomization of selecting
the one feasible solution α portion of the time.

As a specific example, consider

max x : x ≥ 0, P (x ≤ b) ≥ α,
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where Pr[b = i] = ( 1
2 )i+1 for i = 0, 1, 2, . . . and 0 < α < 1. The optimal chance-constraint

solution is x∗ = 1 − log2 α. However, the problem is unbounded for α = 0, so we can
randomize between x = 0 and any arbitrarily large value of x, say x = i, where

Pr[x = 0] = α and Pr[x = i] = 1− α.

The expected value is (1− α)i, which diverges as i→∞.

A realistic application of this model is with a government prohibition constraint. Suppose a
chemical plant must limit the emissions of some toxic chemical, but it is not possible to have
zero emissions (except by shutting down the plant). The regulation could be stipulated in the
form of a chance constraint, and the plant could choose a randomized strategy to improve its
expected value, even though that is not what the government had in mind. (See LP Myth 23.)

Bounding x ≤ 1, the same example illustrates the result by LaValle[23]:

A chance-constraint problem is Bayesable if, and only if, no chance constraint is
binding.

LaValle’s meaning of “Bayesable” is that the (pure) strategy of the chance-constraint program
also maximizes some utility function. (He confined attention to linear forms, but the result
clearly generalizes to this possibly nonlinear and integer chance-constraint program.)

Also see Eisner, Kaplan, and Soden[13].

SF Myth 3. In a chance-constraint stochastic program, the expected value of additional
information is non-negative.

The stochastic model is
Z = min cx : x ≥ 0, Ax ≥ b,

where A, b, c (and hence Z) are random variables. The chance-constraint equivalent is:

z = min E[c]x : x ≥ 0, Pr[Ax ≥ b] ≥ α,

where α ∈ (0, 1). The expected value with perfect information is given by:

EV PI = z −E[Z].

Suppose additional information about the random values can be obtained by an experiment,
leading to a conditional chance-constraint model:

Z(W ) = min E[c |W ]x : x ≥ 0, Pr[Ax ≥ b |W ] ≥ α.

This yields the expected value with sample information:

EV SI = z −EW [Z(W )].

The value of the sample information is EV SI−EV PI, which the myth asserts is not negative.

Counterexample. Blau[3] provides the following:

min x : x ≥ 0, x ≥ b.
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This represents a simple inventory model, where x is the level of inventory whose cost is
known to be $1 per unit. The constraint x ≥ b is the demand requirement, where b has
the following distribution:

Pr[b = 0] = 0.9, Pr[b = 1] = 0.1.

Then, EV PI = 0− (0× 0.9 + 1× 0.1) = −0.1.
Now suppose a marketing expert could perform an experiment (for example, a survey) with
an outcome W ∈ {0, 1} such that:

Pr[W = 0 | b = 0] = 0.99 = 1−Pr[W = 1 | b = 0];
Pr[W = 0 | b = 1] = 0.1 = 1−Pr[W = 1 | b = 1].

Using Bayes Rule, the posterior distribution of b is given by:

Pr[b = 0 |W = 0] = (0.99)(0.9)
0.901 = 0.9889 = 1−Pr[b = 1 |W = 0];

Pr[b = 0 |W = 1] = (0.99)(0.01)
0.099 = 0.0909 = 1−Pr[b = 1 |W = 1].

For each outcome, the chance-constraint programs are, for α = 0.9:

Z(0) = min{x : x ≥ 0, Pr[x ≥ b |W = 0] ≥ 0.9}
= min{x : x ≥ 0, x ≥ 0}
= 0;

Z(1) = min{x : x ≥ 0, Pr[x ≥ b |W = 1] ≥ 0.9}
= min{x : x ≥ 0, x ≥ 1}
= 1.

The marginal distribution of W is

Pr[W = 0] = 0.99× 0.9 + 0.1× 0.1 = 0.901
Pr[W = 1] = 0.01× 0.9 + 0.9× 0.1 = 0.099.

Hence, EV SI = z − (0× 0.901 + 1× 0.099) = −0.099, so EV PI < EV SI. This appears
to say that we are better off not performing the experiment to gain more knowledge, even
if the cost of the experiment is zero.

Blau attributes this “dilemma” to the structure of the chance-constraint model. Also see
Charnes and Cooper[5], Hogan, Morris, and Thompson[18], Jagannathan[19, 20], LaValle[22, 23, 24]
and Nau[27].

All that said, there is a more elementary explanation. With the original probability distri-
bution, x = 1 is feasible, but the new information changes the probabilities such that this is
infeasible. Thus, the value of x∗ drops from 1 to 0 in the presence of the new information.

This simpler explanation supports Blau’s claim that the chance-constraint must be used with
care. Combined with SF Myth 2, the effects of infeasibility, even if only 1 − α of the time,
must be thought through in the decision process to determine if the chance-constraint model
is appropriate. (Just as other stochastic programming models must be considered for their
appropriateness. No one model is the right one for all situations!)
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SF Myth 4. updated A recourse MILP with interval data uncertainty has its minimax regret
solution with scenarios composed of only the endpoints.

My thanks to Tiravat Assavapokee and Matthew J. Realff for correcting my previous version.

Counterexample. Assavapokee, Realff, and Ammons[2] provide the following. Let θ be
uncertain on the interval [0, 10] in the MILP:

z∗(θ) = max f(x|θ) : x ∈ {0, 1}3

f(x|θ) = max{2y1 + y2 + y3 − x2 : y ≥ 0,
y1 + y2 ≤ 10x1, y1 ≤ 5x2, y2 ≤ θ, y1 ≤ y2, y1 + y3 ≤ 5x3.}

For known value of θ, the MILP optimal value is:

z∗(θ) =


θ + 5 for θ ∈ [0, 1]
2θ + 4 for θ ∈ [1, 5]
14 for θ ∈ [5, 9]
θ + 5 for θ ∈ [9, 10].

With θ unknown at the outset, the maximum regret for x is

R(x) = max
θ∈[0,10]

{z∗(θ)− f(x|θ)}.

The myth asserts that we can minimize the maximum regret by restricting θ to its end
points:

min
x∈{0, 1}3

max{z∗(0)− f(x|0), z∗(10)− f(x|10)}.

There is clearly no disadvantage to setting x1 = x3 = 1, so the issue is whether x2 = 0 or
x2 = 1. In the endpoint model, we have

x2 = 0 ⇒ f(x|0) = 5, f(x|10) = 15
⇒ max{z∗(0)− f(x|0), z∗(10)− f(x|10)} = 0

x2 = 1 ⇒ f(x|0) = 4, f(x|10) = 14
⇒ max{z∗(0)− f(x|0), z∗(10)− f(x|10)} = 1 .

Therefore, the endpoint model’s optimal solution is x = (1, 0, 1) with its perceived regret
value of zero; however, the actual regret value is R(x) = 4, with θ = 5 (z∗(5) − f(x|5) =
14− 10 = 4). For the full model, with θ ∈ [0, 10], the optimal solution is x = (1, 1, 1) with
regret value

R(x) = max
0≤θ≤10

{z∗(θ)− f(x|θ)} = 1,

thus contradicting the myth.
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SF Myth 5. Someone with constant risk aversion always selects the less risky of two invest-
ments.

This can fail for small wealth, as shown by Lippman, McCall, and Winston[25].

Counterexample. Let s be the wealth of an investor. There are two possible investments
with ri = random return for the i th investment. Letting V (s) denote the maximum ex-
pected return for a wealth of s, the expected discounted return model is:

V (s) = max
i
{1−E[e−λ(s+ri)] + βE[V (s+ ri)]},

where β ∈ (0, 1) and λ is the constant risk aversion factor — that is, independent of the
wealth.
Assume wealth and returns are integer-valued, and that investment continues indefinitely
unless the investor becomes bankrupt — that is, s = 0, in which case V (0) = 0 and the
process stops. Further, assume each investment produces either one positive return, ri, or
a loss of 1 with probabilities:

Pr[ri = ri] = pi > 0 and Pr[ri = −1] = 1− pi > 0.

Set the parameter values as follows:

λ = 1, β = 0.9, r1 = 2, r2 = 1, p1 = 0.5, p2 = 0.6.

Then, µ1 = 1.4268 and µ2 = 1.3080, so we have

V (s) = max
{

1− e−s1.4268 + 0.9 (0.5V (s+ 2) + 0.5V (s− 1)),
1− e−s1.3080 + 0.9 (0.6V (s+ 1) + 0.4V (s− 1))

}
for s = 1, 2, . . .
Note that E[r1] = 0.5, Var[r1] = 5.625, E[r2] = 0.2, and Var[r2] = 0.544. Hence, investment
1 has both the greater expected return and the greater risk. Lippman et al. showed that
the investor chooses the risky investment when s = 1 — that is,

−e−11.4268 + 0.45V (3) > −e−11.3080 + 0.54V (2).

Thus, the optimality of risk aversion depends upon the level of wealth; it is possible for a
risk-averse investor to choose a risky investment for a low level of wealth. Lippman et al. note
that V is concave in their counterexample, so the counter-intuitive property is not due to any
lack of convexity structure. They also prove that the myth remains if we allow no investment
as a decision.

SF Myth 6. There is always a maximum likelihood estimator.

Wise and Hall[9] provide a counterexample such that the likelihood function is unbounded.

Counterexample. Let the density function be

f(x) = 1− ε
σ

h

(
x− µ
σ

)
+ ε h(x− µ),
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where µ = mean, σ2 = variance, h(·) is the standard Gaussian density function, and ε is a
(fixed) value in (0, 1). We want to estimate (µ, σ2).
The likelihood function for independent samples {x1, . . . , xn} is

L(µ, σ2) =
n∏
i=1

[
1− ε
σ

h

(
xi − µ
σ

)
+ ε h(xi − µ)

]
.

This is lower-bounded by

L(µ, σ2) = 1− ε
σ

h

(
x1 − µ
σ

) n∏
i=2

ε h(xi − µ).

Consider µ = x1, so that h
(
x1−µ
σ

)
= h(0) > 0, independent of σ. LetK = h(0)

∏n
i=2 ε h(xi−

x1) > 0, so the likelihood function is unbounded:

lim sup
σ→ 0

L(x1, σ
2) = lim sup

σ→ 0

1− ε
σ

K =∞.

Thus, this distribution has no maximum likelihood estimator.

SF Myth 7. If the demand density function in the newsvendor model is unimodal, so is the
profit function.

The newsvendor problem is a single-period inventory problem. A manufacturer produces a
product at a unit cost c and sells it to a retailer at unit cost w > c, who sells it to consumers
at unit price r > w. Demand is a random variable with density function f(x) and distribution
function F (x). The optimal order quantity is x∗(w) = F−1((r−w)/r

)
. The profit function is

Φ(w) = (w − c)F−1((r − w)/r
)
.

Counterexample. The following is based on Paul[29]: Let c = 0 and r = 1 with

f(x) =



0 if x < 0
20x if 0 ≤ x ≤ 0.05
1.25− 5x if 0.05 ≤ x ≤ 0.1
0.751− .01x if 0.1 ≤ x ≤ 29

40
7.9285− 10x if 29

40 ≤ x ≤
31
40

0.256− .01x if 31
40 ≤ x ≤ 2.525

0 if x > 2.525

(A slight slope is added to Paul’s flat regions to satisfy strict unimodality.)

Then, f is unimodal (with mode at
x = 0.05). For 0 ≤ w ≤ 1, Φ(w) =
wF−1(1−w), which has two modes, at
w = 0.24 and w = 0.51, thus violating
the myth.

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]



Page 182 February 20, 2010 SF Myths

Paul also showed that a non-increasing density function can result in a multi-model profit
function, and that shifting the demand function may destroy the unimodality of the profit
function.

SF Myth 8. If inventories for substitute products are pooled by a centralized system, the
optimal total base-stock cannot increase.

We have n products with random demands, D1, . . . , Dn. Optimal inventories for each (ignoring
the others) may use a simple model, such as the newsboy problem. Letting Fi denote the
cumulative distribution function of Di, its optimal inventory level is

F−1
i (R) = inf{d : R ≤ Fi(d)},

where R = csi
csi + cei

(called the newsboy ratio), csi = unit cost of shortage, and cei = unit cost

of excess.

Here we suppose the products could substitute for each other — that is, if there is a shortage in
one, some portion of consumers are willing to buy any other. Then, the inventory model pools
the inventories, and optimal levels depend upon various assumptions about the substitution.
Letting F denote the c.d.f. of the sum, D1 + · · · + Dn, the myth asserts that F−1(R) ≤∑n
i=1 F

−1
i (R).

Gerchak and Mossman[14] provide the following:
Counterexample. Let n = 2 and let F1 = F2 = F be the exponential distribution with

common parameter λ. Then, F is the exponential distribution with parameter 2λ. Thus,

F (d) = 1− e−λd and F(2d) = 1− e−4λd.

Here are some distribution values for λ = 1:
d F (d) F(d)
0 0.6321 0.3935
1 0.8647 0.6321
2 0.9502 0.7769
3 0.9807 0.8647

For cs = 4ce, the newsboy ratio is R = 0.8, which implies that the optimal level for each
product without any substitution is F−1(0.8) = 1, for a total inventory of 2. With full
substitution, the optimal (pooled) level is F−1(0.8) = 3. Hence, the pooled inventory is
greater than the total of the separate inventories, which violates the myth.
Another counterexample is with the Poisson distribution and λ = 1. This is perhaps more
realistic for a demand distribution, giving some skewness to the right and limiting the
demand to integer values. In this case, we have the following distribution values:

d F (d) F(d)
0 0.3679 0.1353
1 0.7358 0.4060
2 0.9197 0.6767
3 0.9810 0.8571
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For cs = 2.5ce, the newsboy ratio is R = 0.7143, which implies that the optimal level
for each product without any substitution is F−1(0.7143) = 1, for a total inventory of 2.
With full substitution, the optimal (pooled) level is F−1(0.7143) = 3. Hence, the pooled
inventory is greater than the total of the separate inventories, which violates the myth.
In both cases we choose R to satisfy R < R < R. Equivalently, we have a range on the
cost ratio:

R

1−R <
cs

ce
<

R

1−R
.

For the two cases, these ratios are:

Exponential: 3.482 = 0.7769
0.2231

<
cs

ce
<

0.8647
0.1353

= 6.391 (I chose 4.)

Poisson: 2.093 = 0.6767
0.3233

<
cs

ce
<

0.7358
0.2642

= 5.998. (I chose 2.5.)

Yang and Schrage[38] establish a sufficient condition for the myth to be violated:
Suppose D1, . . . , Dn are i.i.d. with common cumulative distribution function, F , and
costs, cs, ce. Then, F−1(R) > nF−1(R) if there exists d such that

F (d) > F(nd) and F (d) ≥ R ≥ 0.5.

One can verify that the counterexamples satisfy this condition for the indicated range of cost
ratios.

Yang and Schrage provide more analysis of the full substitution model, identifying skewness of
the probability distribution as the key property that creates a counterexample. They extend
the model to include partial substitution, which limits the percentages of substitution for each
product.

Also see Netessine and Rudi[28], who show that the optimal centralized inventory may exceed
the corresponding competitive demand. Their example specifies demands in two categories:
(1) demands are first-choice, rarely from substitution; and, (2) demands serve primarily as
substitutes. Also, see DP Myth 9 for a dynamic version of this anomaly.

SF Myth 9. It is not possible to increase both throughput and the fairness of an optimal
bandwidth allocation.

A capacitated network with M links is shared by N sources. The M × N routing matrix is
denoted by R. Letting xi denote the (controllable) transmission rate of source i, these rates
are limited by the constraint Rx ≤ c, where cj is the capacity of link j. The allocation model
uses the objective function:

f(x;α) =
N∑
i=1

U(xi, α),

where

U(v;α) =


v1−α

1− α if α 6= 1

log v if α = 1.
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α is a parameter that imposes greater “fairness” as it increases. Here are some special cases:

α = 0 ⇒ f =
∑
i xi = throughput

α = 1 ⇒ f =
∑
i log xi = proportional fairness

α = 2 ⇒ f = −
∑
i

1
xi

= potential delay
α =∞ ⇒ f ↔ min{xi} = fairness

The problem is to maximize f(x;α) subject to x > 0, Rx ≤ c, for a specified value of α ≥ 0.

Counterexample. Tang, Wang, and Low[36] provide the following example.

There are 5 links and 7 sources, shown on the right.
Let T (α) denote the throughput for an α-optimal
solution. The first two links have capacity 10 and
the last three have capacity 1,000.

The myth asserts T decreases as α in-
creases. However, Tang, Wang, and
Low demonstrate that this is not true,
as shown on the right.

SF Myth 10. If a team has the greatest win percentage before and after some specified date,
it also has the greatest overall win percentage.

This is an instance of Simpson’s Paradox, for which there is a vast literature. Cochran[9] used
the baseball players’ strike of 1981 as the demarcating date, and he used Simpson’s Paradox to
teach some elements of integer programming modeling, particularly the formation of objective
functions.

Counterexample. Consider the following win-loss records:

Pre-Strike Post-Strike Total
Team w ` w + ` w

w+`
w ` w + ` w

w+`
w ` w + ` w

w+`

A 17 18 35 0.4857 18 15 33 0.5455 35 33 68 0.5147
B 15 16 31 0.4839 19 16 35 0.5429 34 32 66 0.5152

(Teams A and B play other teams too.)

Team A stands above Team B in both the pre-strike and post-strike games, but Team B
stands above Team A overall.
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See the Wikipedia entry at http://en.wikipedia.org/wiki/Simpson’s_paradox for more examples
and further explanation.

SF Myth 11. In revenue management, it is always better to re-solve dynamic allocations
than use the planned allocations.

The key to this myth is the definitions of planned allocation and reallocation. Cooper[10]
provides the following:

Counterexample. Consider two fare classes in a flight with one leg and two seats available.
Class 1 pays $1,000 and class 2 pays $200. The LP to plan allocations during the planning
horizon, [0, T ] time periods is:

max 10x1 + 2x2 : x1 + x2 ≤ 2, 0 ≤ x ≤ T.

Assume demands, Di(t), for classes i = 1, 2, are independent Poisson processes, each with
rate 1. For T = 2, an optimal solution to the above LP is x∗ = (2, 0). This is the planned
solution: reserve 2 seats for class 1 and none for class 2.
The issue is whether to reallocate after one period, having had demand d = (d1, d2):

max 10y1 + 2y2 : y1 + y2 ≤ 2−
(

min{d1, x
∗
1}+ min{d2, x

∗
2}
)
, 0 ≤ y ≤ E[D(2)],

where E[D(2)] is the expected demand in period 2 for each class.
Here are optimal re-allocations for each possible value of d1 (the value of d2 is irrelevant
since x∗2 = 0):

d1 y∗1 y∗2 Pr(D1(1) = d1)
0 1 1 0.3679
1 1 0 0.3679

≥ 2 0 0 0.2642

The expected revenue for this reallocation policy satisfies:

E[10 min{D2(1), 1}+ 2 min{D2(2)−D1(1), 1} |D1(1) = 0]

= 10 E[min{X, 1}] + 2 E[min{X, 1}] = 7.59

< E[10 min{D2(1), 2} |D1(1) = 0] = 10 E[min{X, 2}] = 8.96,

where X is a random variable with Poisson distribution having rate 1.
Therefore, the expected remaining revenue is less by reallocation than by staying with the
planned allocations, given the demand in the first period satisfies D1(1) = 0.

SF Myth 12. Among no-memory rules to order list items, the move-to-front rule minimizes
the average cost.

The cost to access an item is its position in the list. For example, if the order does not change
and Pi is the probability that item i is requested, the average cost for accessing n items is
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∑n
i=1 i Pi. We assume that the probabilities are not known a priori. A no-memory rule is

one that does not use any information about the history of requests. (This includes relative
frequencies, so their probabilities cannot be estimated.) Rivest[30] introduced the move-to-
front rule: replace the requested item with the one at the front of the line. For example, if the
items are in their natural order, 1, 2, . . . , n, and there is a request for item m, the new order
is m, 1, 2 . . . ,m− 1,m+ 1, . . . , n. The myth asserts that this has the least average cost among
all no-memory rules. Rivest conjectured the myth using examples for some intuition.

Counterexample. Anderson, Nash, and Weber[1] provide the following. The request prob-
abilities for six items are P = (0.851, 0.146, 0.001, 0.001, 0.001). Consider the no-memory
rule defined by six permutations, where Πij is the position of the j th item after receiving
a request for the i th item.

Π =


1 2 3 4 5 6
1 2 3 4 5 6
2 3 1 4 5 6
1 2 4 3 5 6
1 2 3 5 4 6
3 4 1 2 6 5

 .

For example, if the request is for item 1 or 2, the order does not change. If the request is
for item 3, the new order is 231456.
The average cost for the move-to-front rule is approximately 1.26, whereas the average cost
of this transposition rule is approximately 1.22. (Both calculations are done by forming
the associated Markov chain — see Rivest[30].) See Sleator and Tarjan[34] for insight as to
why the move-to-front rule is “approximately optimal” in practice.

SF Background — Data Envelopment Analysis
We are given features of each Decision-Making Unit (DMU), which we partition into inputs,
denoted I, and outputs, denoted O. The production possibility set, P , is the convex hull of
{(Ik, Ok)}, and we wish to evaluate the k th DMU using the features of the others. There are
several ways to approach this.

Assume, for our limited purposes here, that (Ik, Ok) is in the interior of the convex hull. Let
c denote the cost vector associated with the DMUs, and our goal is to compare ck with the
other DMUs. To do so, we solve the cost-comparison LP:

min
∑
i 6=k

cixi : x ∈ Fk(Ik, Ok), (SF.25)

where

Fk(Ik, Ok) = {x : x ≥ 0,
∑
i 6=k xi = 1,

∑
i 6=k Iixi ≤ Ik,

∑
i 6=k Oixi ≥ Ok}. (SF.26)

In words, we find a point in the production possibility set such that each of its inputs does not
exceed the input for the k th DMU, and each of its outputs is at least as great as that of the
k th DMU. We find the least costly point and compare that with ck to evaluate how well the
k th DMU performs.
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Two other LPs are used to evaluate a DMU:

Input-oriented: min θ : x ∈ Ck(θIk, Ok) (SF.27)
Output-oriented: max θ : x ∈ Ck(Ik, θOk), (SF.28)

where Ck is the set of conical combinations of DMU features, except the k th DMU:

Ck(Ik, Ok) = {x : x ≥ 0,
∑
i 6=k Iixi ≤ Ik,

∑
i 6=k Oixi ≥ Ok}.

The Input-oriented LP asks for the minimum proportionate input for which the output could
be satisfied. The Output-oriented LP asks for the maximum proportionate output within the
input limit. (See Cooper, Gu, and Li[11] for alternative DEA models.)

Consider the Input-oriented model with Ok > 0 (so x = 0 is not feasible). Let θ∗ be the
minimum proportionate change with optimal weight set X∗ for (SF.27). The return to scale
exhibited by the k th DMU is classified by the total of the solution weights in X∗:

Constant return to scale (CRS):
∑
i x
∗
i = 1 for some x∗ ∈ X∗;

Decreasing return to scale (DRS):
∑
i x
∗
i > 1 for all x∗ ∈ X∗;

Increasing return to scale (IRS):
∑
i x
∗
i < 1 for all x∗ ∈ X∗.

For example, an increasing return to scale means that the same output requirements can be
satisfied with proportionally less input from the k th DMU. The maximum total weight, among
the optima that yield θ∗, is given by:

σ−1 = max
x∈X∗

{∑
i 6=k xk

}
. (SF.29)

(See Seiford and Zhu[32] for details and additional models.)

DEA Pitfalls and Protocols

Dyson et al.[12] describe pitfalls to avoid in using DEA. Here are some examples:

Homogeneity. Use clustering, if necessary, to have the DMUs comparable. For example, do
not compare a science department with a language department.

Correlation. Reduce features to be as uncorrelated as possible. For example, if staff size is
one input, total staff budget is correlated, so they should not be used as though they are
two independent inputs.

Feature measurement. The inputs and outputs may be subject to measurement errors, and
some may be qualitative. Several approaches have been considered (cited by Dyson et
al.).

Linearity. The DEA models assume that we can represent a feature by taking a (non-
negative) linear combination of the features of the DMUs.

Weight restrictions. There may be restrictions, such as simple bounds, x ≤ x ≤ x. These
may depend upon the DMUs in the database. Removing or adding a DMU could change
the weights, the manner of which needs explanation.
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SF Myth 13. A DMU that exhibits increasing return to scale continues to do so up to a
proportional increase of all outputs equal to α ∈ [1, σ).

This is one of the results by Seiford and Zhu[32] (also see [33] for further discussions and
placing such errors in context).

Counterexample. Jahanshahloo, Lofti, and Zohrehbandian[21] provide the following:

DMU
1 2 3 4 5 6 7

Input 2 3 6 12 24 24 9
Output 1 1 6 12 22 23 8

Let k = 2, so the Input-oriented LP is:

min θ : x ≥ 0
2x1 + 6x3 + 12x4 + 24x5 + 24x6 + 9x7 ≤ 3 θ
x1 + 6x3 + 12x4 + 22x5 + 23x6 + 8x7 ≥ 1.

An optimal solution is θ∗ = 1
3 with x∗ = (0, ·, 0.0911, 0.0378, 0, 0, 0). This means that

DMU2 can produce its output with a combination of inputs from DMU3 and DMU4 that
use only 1

3 of the DMU2 input. That combination sums to less than one, so DMU2 exhibits
an increasing return to scale.

Using (SF.29)[32], σ = 6, so the myth asserts that the IRS remains in effect if the output
is increased to αO for α ∈ [1, σ). However, for α = 5 < 6, we get (I2, O2) = (3, 5) 6∈ P .
Thus, (3, 5) does not exhibit IRS because it is not in the production possibility set.

SF Myth 14. When using LP for DEA, it does not matter if you obtain a basic or interior
optimum.

Given a solution, x∗, to (SF.25) the associated peer group is σ(x∗) = {i : xi > 0}. If there are
alternative optima, different peer groups can be generated, depending upon which solution is
obtained. That raises the issue stated in the myth, given by Greenberg[16].

Any interior solution gives the union of all peer groups. Let x0 denote an interior solution,
and let {x`}L`=1 denote the basic solutions. Then,

σ(x0) =
L
∪
`=1

σ(x`).
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Because of the potential sensitivity of the evaluation process to the choice of peer group, the
interior solution better serves the interests of full disclosure. If only one peer group is used in
the evaluation, one may question whether another peer group should have been used.

Counterexample.

Consider just one input and one output, so the feature
space is in the plane. There are five DMUs in the
database, and we are evaluating number 5, illustrated
on the right.

Let the cost vector be c = (8, 6, 5, 7), so the LP is:

min 8x1 + 6x2 + 5x3 + 7x4 : x ≥ 0
x1 + x2 + x3 + x4 = 1

10x1 + 10x2 + 110x3 + 110x4 ≤ 55
10x1 + 110x2 + 110x3 + 10x4 ≥ 20

There are two optimal basic solutions: x1 = (0.45, 0.10, 0, 0.45) and x2 = (0.55, 0, 0.10, 0.35),
with associated peer groups {1, 2, 4} and {1, 3, 4}.

Basic Solution x1 Basic Solution x2

An interior solution is x0 = (0.5, .05, 0.05, 0.4) with peer group σ(x0) = {1, 2, 3, 4}.

One may note, from the example, that the interior solution by itself does not provide all of
the useful information. In particular, DMUs 1 and 4 must be in the peer group, whereas the
third member could be either DMU 2 or 3 to form a basic feasible solution. Thus, the essential
inclusion of DMUs 1 and 4 is lost if only one solution is obtained, regardless of whether it is
basic or interior.

The bottom line is that the interior solution is preferred. Its peer group better fits the need
for disclosure, and with a modest amount of additional computation, each essential member
of the peer group can be identified (that is, fix xi = 0 for each i ∈ σ(x0); i is essential if the
LP becomes infeasible).
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SF Myth 15. The input-oriented and output-oriented LPs are infeasible if, and only if, the
k th DMU is dominant.

Chen[7] (Y.) proposed this in her analysis of “super-efficiency” — that is, exclusion of the the
k th DMU. Here, we use the exclusion in our basic definitions, (SF.27) and (SF.28). The k th
DMU is dominant if it uses no more input and produces no less output than any other DMU
— that is,

Ik ≤ Ii and Ok ≥ Oi for all i 6= k, and
Ik < Ii or Ok > Oi for some i 6= k.

Counterexample. Soleimani-dmaneh, Jahanshahloo, and Foroughi[35] provide the following.
In each example, let k = A (first DMU) in (SF.27) and (SF.28).

DMU A does not dominate any other DMU.
However, both LPs are infeasible because A has
the strict minimum of input 1 and the strict
maximum of output 1. Thus, infeasibility does
not imply dominance (except for one input and
one output).

DMU
A B C D E

Input 1 1 5 3 3 3/2
Input 2 1 1 2 4 1/2

Output 1 10 9 1 1 1/5
Output 2 3 5 17 1 1/5
Output 3 2 1 1 2 1/5

DMU A dominates B, but the output-oriented LP
is feasible. Thus, dominance does not imply infea-
sibility.

DMU
A B

Input 1 2
Output 2 2

SF Myth 16. An acceleration in technology improvement results in a more rapid introduction
of new technology.

Cheevaprawatdomrong and Smith[6] present this myth as a paradox in equipment replace-
ment. Their model is as follows. Let Ci denote the undiscounted cost of acquiring, operating,
maintaining, and salvaging a machine kept for i periods, for i = 1, . . . The incremental costs
of keeping a machine is

ci = Ci − Ci−1,

where C0
def= 0. The total discounted cost for i periods is

TCt(β) =
t∑
i=1

βi−1ci,

where β ∈ (0, 1). The tacit assumptions are:

1. Costs are stationary and ci ≥ 0 for all i.
2. The effect of technological improvement is to reduce the discount factor.
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The decision variable is the cycle time, t∗(β), that minimizes annual charge:

t∗(β) ∈ argmin
t=1,2,...

A(t;β) = TCt(β)
1− βt .

The myth asserts β′ < β→ t∗(β′) < t∗(β).

Counterexample. Cheevaprawatdomrong and Smith establish a family of counterexamples
that includes the following instance. Let ci = 0.9i for i = 1, . . . , 5 and ci = ci−1/0.9 for
i > 5. Then, t∗(0.5) = 8 > t∗(0.6) = 7.

The key to this is that there exists m ∈ �+ such that ci ≥ ci+1 for 1 ≤ i < m and ci ≤ ci+1
for i ≥ m. In the example, m = 5.

SF Myth 17. The least-cost path between two points in the presence of congested regions
coincides with segments of the grid obtained by passing horizontal and vertical lines through
the vertices of the congested region and existing facility locations.

My thanks to Avijit Sarkar for providing this myth.

The problem is to find a path that minimizes the total rectilinear distance travelled, with
a penalty, called the congestion factor, when traveling in a congested region defined by a
polytope. Butt and Cavalier[4] proposed a model of the form:

min |xs − xin|+ |ys − yin|+ (1 + α)
(
|xout − xin|+ |yout − yin|

)
+ |xout − xt|+ |yout − yt| :

xin ≤ xin ≤ xin, xout ≤ xout ≤ xout,

yin ≤ yin ≤ yin, yout ≤ yout ≤ yout

(xin, yin) ∈ Gin, (xout, yout) ∈ Gout,

where (xin, yin) and (xout, yout) are the coordinates of entrance and exit, respectively, of the
congestion region, and Gin,Gout are the possible entrances and exits, respectively, restricted
to moving on the grid determined by s, t, and the vertices of the congestion region. (The
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bounds are redundant if Gin,Gout are explicit sets of coordinates; but they could be just grid
restrictions.)

The Butt-Cavalier model assumes that there is exactly one entrance and one exit. It is optimal
to go around the congestion region for sufficiently large α. Further, the shape of the polygon
and locations of s, t could have an optimal path with multiple entrances and exits. Thus, this
model is an approximation, where the assumption of exactly one entrance and exit need not
hold. Assume it does, as in the following.

Counterexample. Sarkar, Batta, and Nagi[31] define a polytope with four vertices: A,B,C,D.
The coordinates of the points are listed in the following table.

A ( 1, 11)
B (13, 8)
C (11, 2)
D ( 2, 5)
s ( 4, 3)
t ( 9, 10)

The congestion factor is α = 0.3, so the Butt-Cavalier path is determined by choosing
entrance and exit points by the mathematical program:

min |4− xin|+ |3− yin|+ 1.3 (|xout − xin|+ |yout − yin|) + |xout − 9|+ |yout − 10| :
2 ≤ xin ≤ 11, 1 ≤ xout ≤ 13, 2 ≤ yin ≤ 5, 8 ≤ yout ≤ 11

(xin, yin) ∈ {(2, 5), (4, 4.333)}, (xout, yout) ∈ {(2, 10.75), (5, 10), (9, 9.25)}

Every rectilinear path from s to t that always moves either right or up incurs a distance of
12 units (the rectilinear distance from s to t). The additional cost is the congestion factor
times the rectilinear distance from the entrance into the congested region to its exit. The
Butt-Cavalier path travels 6.67 units in the congestion region, whereas the shortest path
(not restricted to the constructed grid) travels only 6 units.

Butt-Cavalier path cost = 14 Shortest path cost = 13.8
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SF Myth 18. The greatest eigenvalue of a real, symmetric matrix, whose diagonal elements
are convex functions of a parameter, and whose absolute off-diagonal elements are convex
functions of the same parameter, is a convex function of that parameter.

Let A(u) be an n × n real, symmetric matrix, where Aii(u) is a convex function of u ∈ �.
Further, assume Aij(u) are non-negative convex functions of u for i 6= j. Let λ(u) denote the
greatest eigenvalue of A(u). Then, Ye[39] proved λ is a convex function of u. He conjectured
the myth, which extends this property. Also, it is true for n = 2 since[

A11(u) |A12(u)|
|A21(u)| A22(u)

]
and

[
A11(u) A12(u)
A21(u) A22(u)

]
have the same eigenpolynomials.

Counterexample. Liu and Liu[26] provide the following:

A(u) =

 0 −u −u
−u 0 −u2

−u −u2 0

 .
Then,

det(λI −A(u)) = λ3 + 2u4 − 2λu2 − λu4 = (λ− u2)(λ2 + u2λ− 2u2).

The three eigenvalues are thus:

u2, 1
2

(
−u2 +

√
u4 + 8u2

)
, 1

2

(
−u2 −

√
u4 + 8u2

)
,

and the greatest of these is given by:

λ(u) =
{
u2 if |u| > 1
1
2

(
−u2 +

√
u4 + 8u2

)
if |u| ≤ 1

This is not convex over �.

SF Myth 19. A democratically defined social preference is transitive if individual preferences
are transitive.

This is based on Arrow’s Impossibility Theorem, a cornerstone of social preference as the sum
of individual preferences.

Counterexample. Suppose there are three choices: A,B,C. The population has three
groups, X,Y, Z, which differ by their preferences.

Group X has preferences A � B � C, group Y has preferences
C � A � B, and group Z has preferences B � C � A.

Choice
Group A B C

X 1 2 3
Y 2 3 1
Z 3 1 2
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Now suppose the groups are of equal numbers, so a vote of all three choices gives no winner.
Each choice receives one group vote.

Consider a vote for each pair, where there is a
winner in each case. We see that A � B � C,
but C � A, so the democratically chosen social
preference is not transitive.

Choice
Group A vs.B B vs.C A vs.C
X A B A
Y A C C
Z B B C

winner A B C

Arrow’s Impossibility Theorem has implications in mathematical programming, notably for
multiple-objective programming. Also, see Greenberg and Murphy[17] for an application to
comparative model assessment.
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If you know of some erroneous result, paradox, fallacy, anomaly, pitfall, or some counter-
intuitive result in mathematical programming, please let me know. More generally, I
welcome feedback, especially my errors and other opportunities.

Harvey J. Greenberg <hjgreenberg@gmail.com>
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